
LabWindows®/CVI 4.0
Addendum

March 1996 Edition

Part Number 321194A-01

© Copyright 1994, 1996 National Instruments Corporation.
All rights reserved.

Internet Support

GPIB: gpib.support@natinst.com
DAQ: daq.support@natinst.com
VXI: vxi.support@natinst.com
LabVIEW: lv.support@natinst.com
LabWindows: lw.support@natinst.com
HiQ: hiq.support@natinst.com
VISA: visa.support@natinst.com
FTP Site: ftp.natinst.com
Web Address: www.natinst.com

Bulletin Board Support

BBS United States: (512) 794-5422 or (800) 327-3077
BBS United Kingdom: 01635 551422
BBS France: 1 48 65 15 59

FaxBack Support

(512) 418-1111

Telephone Support (U.S.)

Tel: (512) 795-8248
Fax: (512) 794-5678

International Offices

Australia 03 9 879 9422, Austria 0662 45 79 90 0, Belgium 02 757 00 20,
Canada (Ontario) 519 622 9310, Canada (Québec) 514 694 8521, Denmark 45 76 26 00,
Finland 90 527 2321, France 1 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186,
Italy 02 48301892, Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 202 2544,
Netherlands 03480 33466, Norway 32 84 84 00, Singapore 2265886, Spain 91 640 0085,
Sweden 08 730 49 70, Switzerland 056 20 51 51, Taiwan 02 377 1200, U.K. 01635 523545

National Instruments Corporate Headquarters

6504 Bridge Point Parkway Austin, TX 78730-5039 Tel: (512) 794-0100

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as
evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software
media that do not execute programming instructions if National Instruments receives notice of such defects during
the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the
outside of the package before any equipment will be accepted for warranty work. National Instruments will pay
the shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully
reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments
reserves the right to make changes to subsequent editions of this document without prior notice to holders of this
edition. The reader should consult National Instruments if errors are suspected. In no event shall National
Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND

SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL

INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS

WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR

CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the liability of
National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.
Any action against National Instruments must be brought within one year after the cause of action accrues.
National Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control.
The warranty provided herein does not cover damages, defects, malfunctions, or service failures caused by
owner’s failure to follow the National Instruments installation, operation, or maintenance instructions; owner’s
modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood,
accident, actions of third parties, or other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or
mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole
or in part, without the prior written consent of National Instruments Corporation.

Trademarks

NI-DAQ®, NI-488.2™, and NI-488.2M™ are trademarks of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their respective companies.

Warning Regarding Medical and Clinical Use
of National Instruments Products

National Instruments products are not designed with components and testing intended to ensure a level of
reliability suitable for use in treatment and diagnosis of humans. Applications of National Instruments products
involving medical or clinical treatment can create a potential for accidental injury caused by product failure, or by
errors on the part of the user or application designer. Any use or application of National Instruments products for
or involving medical or clinical treatment must be performed by properly trained and qualified medical personnel,
and all traditional medical safeguards, equipment, and procedures that are appropriate in the particular situation to
prevent serious injury or death should always continue to be used when National Instruments products are being
used. National Instruments products are NOT intended to be a substitute for any form of established process,
procedure, or equipment used to monitor or safeguard human health and safety in medical or clinical treatment.

© National Instruments Corporation v LabWindows/CVI 4.0 Addendum

Contents

About This Manual ... xi
Organization of This Manual.. xi
Conventions Used in This Manual.. xi
Related Documentation...xii
Customer Communication...xii

Chapter 1
Updates to the Programmer Reference Manual..1-1
Chapter Contents...1-1

Compiler/Linker Enhancements for Windows 95 and NT..1-4
Loading DLLs in LabWindows/CVI ..1-5

Loading 16-bit DLLs under Windows 3.1...1-5
Loading 32-bit DLLs under Windows 95 and NT...1-5

DLLs for Instrument Drivers and User Libraries1-6
Using The LoadExternalModule Function...1-6
Link Errors when Using DLL Import Libraries1-6
DLL Path (.pth) Files No Longer Supported ...1-6
16-Bit DLLs No Longer Supported...1-6
Generating an Import Library..1-6
Default Unloading/Reloading Policy ...1-7

Compatibility with External Compilers ..1-7
Choosing Your Compatible Compiler ...1-7
Object Files, Library Files, and DLL Import Libraries......................................1-8
DLLs..1-8

Structure Packing..1-8
Bit Fields ..1-9
Returning Floats and Doubles ...1-9
Returning Structures ...1-9
Enum Sizes ...1-9
Long Doubles..1-9

Differences with the External Compilers ..1-10
External Compiler Versions Supported...1-10
Required Preprocessor Definitions..1-10

Creating Executables and DLLs in External Compilers for Use with the
LabWindows/CVI Libraries ...1-11

Include Files for the ANSI C Library and the LabWindows/CVI Libraries1-12

Table of Contents

LabWindows/CVI 4.0 Addendum vi © National Instruments Corporation

Standard Input/Output Window ..1-12
Multithreading and the LabWindows/CVI Libraries1-12

Multithreaded Safe Libraries...1-12
Libraries that are Not Multithreaded Safe..1-13

Resolving Callback References From .UIR Files ..1-13
Linking to Callback Functions Not Exported From a DLL..................1-14

Resolving References from Modules Loaded at Run-Time1-14
Resolving References to Non-CVI Symbols..1-15
Resolving Run-Time Module References to Symbols Not Exported
From a DLL..1-15

Run State Change Callbacks Are Not Available in External Compilers...........1-16
Calling InitCVIRTE and CloseCVIRTE ...1-16

Creating Object and Library Files in External Compilers for Use
in LabWindows/CVI ..1-17

Microsoft Visual C/C++...1-18
Borland C/C++ command line compiler..1-18
WATCOM C/C++..1-18
Symantec C/C++..1-19

Creating Executables in LabWindows/CVI ..1-19
Creating DLLs in LabWindows/CVI..1-19

Customizing an Import Library...1-20
Preparing Source Code for Use in a DLL..1-20

Calling Convention for Exported Functions ..1-21
Exporting DLL Functions and Variables ...1-21

Include File Method ..1-21
Export Qualifier Method..1-22

Marking Imported Symbols in Include File Distributed with DLL1-22
Recommendations...1-23

Automatic Inclusion of Type Library Resource for Visual Basic1-24
Creating Static Libraries in LabWindows/CVI ...1-24
Creating Object Files in LabWindows/CVI ..1-25
Calling Windows SDK Functions in LabWindows/CVI ...1-25

Windows SDK Include Files...1-25
Using Windows SDK Functions for User Interface Capabilities......................1-26
Using Windows SDK Functions to Create Multiple Threads...........................1-26
Automatic Loading of SDK Import Libraries..1-26

Setting Up Include Paths for LabWindows/CVI, ANSI C, and SDK Libraries1-27
Compiling in LabWindows/CVI for Linking in LabWindows/CVI1-27
Compiling in LabWindows/CVI for Linking in an External Compiler1-27
Compiling in an External Compiler for Linking in an External Compiler1-27
Compiling in an External Compiler for Linking in LabWindows/CVI1-28

Run-Time Stack Size..1-28
No Floating Point Coprocessor Required..1-28
New Predefined Macros ...1-28

Table of Contents

© National Instruments Corporation vii LabWindows/CVI 4.0 Addendum

General Compiler/Linker Enhancements...1-30
Maximum Nesting of Include Files ..1-30
C Language Extensions ..1-30

Calling Conventions (Windows 95/NT Only) ...1-30
Import and Export Qualifiers ..1-31
C++-Style Comment Markers ...1-32

Duplicate Typedefs...1-32
Structure Packing Pragma (Windows 3.1 and Windows 95/NT only)1-32
Program Entry Points (Windows 95 and NT only)..1-33

Include Paths..1-33
Non-Project-Specific User-Defined Include Paths ..1-33
VXI Plug & Play Include Directory..1-33
Complete Search Precedence ..1-33

Searching for Instrument Driver DLLs (Windows 3.1 Only)1-34
Correction to Documentation..1-34
Searching for DLLs Associated with .fp Files...1-34

Run State Change Callbacks - Clarification..1-35

Distributing Executables, DLLs, and Libraries in Windows 95..1-36
The Run-Time Library DLLs ...1-36

Distributing DLLs You Create ..1-37
Minimum System Requirements...1-37

No Math Coprocessor Required ..1-37
Configuring the Run-Time Library DLLs...1-37
Location of Files on the Target Machine ..1-37

Rules for Using Statically Linked DLL Files ..1-38
Rules for Loading Files Using LoadExternalModule1-38

Distributing Libraries in Windows 95 and NT..1-39

Handing Hardware Interrupts under Windows 95 and NT..1-40

New Compiler/Linker/Run-time Errors and Warnings ...1-41

Chapter 2
Updates to the User Manual..2-1
Chapter Contents...2-1

Project Window Changes..2-3
File Menu...2-3

Auto Save Project ...2-3
Print ...2-3
Most Recently Closed Files..2-3

Edit Menu ..2-4
Use Import Libraries in Project Instead of .dll and .pth Files (Windows 95/NT
Only) ..2-4

Table of Contents

LabWindows/CVI 4.0 Addendum viii © National Instruments Corporation

Build Menu..2-4
Target (Windows 95/NT Only)...2-4
External Compiler Support (Windows 95/NT only) ..2-5
Create Standalone Executable...2-7
Create Dynamic Link Library (Windows 95/NT Only).....................................2-7
Create Static Library (Windows 95/NT Only)...2-9
Create Distribution Kit (Windows 3.1 and Windows 95/NT Only)2-10
Advanced Distribution Kit Options...2-12

Installation Script File Section ..2-12
Executable to Run After Setup ..2-12
Installation Titles ..2-13

Using Instrument Drivers ...2-13
Instrument Driver Files...2-13

VXIplug&play Include Files ...2-13
VXIplug&play DLLs (Windows 3.x) ..2-13
DLL Import Libraries for VXI Plug & Play DLLs (Windows 95
and NT) ..2-14

Window Menu...2-14
Minimize All (Windows 95 only)..2-14
CloseAll..2-15

Library Menu...2-15
Easy I/O for DAQ (Windows 3.1, Windows 95 and NT).....................2-15

Options Menu..2-15
Compiler Options ...2-15
Compiler Defines..2-16
Include Paths ..2-16
Run Options ...2-16

Source Window Changes...2-17
Notification of External Modification (Windows 3.1 and Windows 95/NT Only)2-17
Backspace to Beginning of Word ...2-17
Context Menus...2-17
Edit Menu ..2-17

Select All ..2-18
View Menu..2-18

Recall Panel..2-18
Find Function Panel ..2-18

Run Menu..2-19
Terminate Execution Shortcut Key Changed for Windows 95/NT2-19
Activate Panels When Resuming ..2-19

Options Menu..2-19
Colors...2-19

Syntax Coloring ..2-20
User Defined Tokens for Coloring ..2-20

Table of Contents

© National Instruments Corporation ix LabWindows/CVI 4.0 Addendum

Generate DLL Import Source (Windows 95/NT Only)2-20
Generate DLL Import Library (Windows 95/NT Only)2-21
Create Object File...2-22

Function Panel Changes..2-23
Code Menu...2-23

Select Variable ...2-23
What Can be Included in the List Box...2-24
Data Type Compatibility ...2-25
Sorting of List Box Entries..2-26

Chapter 3
Updates to the User Interface Reference Manual..3-1
Chapter Contents...3-1

Changes to the User Interface Library...3-4
Summary of Major Enhancements..3-4
Corrections to Documentation..3-4

VAL_PORTRAIT and VAL_LANDSCAPE Values3-4
RegisterWinMsgCallback..3-5

Using Zooming and Panning on Graph Controls ..3-5
Zooming and Panning on Graphs..3-5

Using Canvas Controls...3-6
Canvas Controls..3-6

CodeBuilder Changes...3-6
WinMain ...3-6
DLL Projects ...3-6
InitCVIRTE and CloseCVIRTE Functions3-7

New Qualifier for Callback Functions ..3-7
Additions to Table 3-2, Panel Attributes...3-7
Additions to Table 3-5, Font Values...3-8
Additions to Table 3-6, Menu and Menu Item Attributes..3-8
Additions to Table 3-7, Key Modifiers and Virtual Keys..3-8
Additions to Table 3-9, Control Attributes ...3-9
Addition to Table 3-10, Control Styles for ATTR_CTRL_STYLE3-9
Programming with Canvas Controls ...3-9

Functions for Drawing on Canvas...3-10
Batch Drawing..3-10
Canvas Coordinate System...3-11
Offscreen Bitmap..3-11
Clipping..3-11
Background Color ..3-11
Pens..3-12
Pixel Values ...3-12
Canvas Attributes...3-12
Canvas Attribute Discussion...3-14

Table of Contents

LabWindows/CVI 4.0 Addendum x © National Instruments Corporation

Using Rect and Point Structures ...3-15
Functions and Macros for Making Rects and Points..3-16
Functions for Modifying Rects and Points ..3-17
Functions for Comparing or Obtaining Values from Rects and Points.............3-17

Using Bitmap Objects ..3-18
Functions for Creating, Extracting, or Discarding Bitmap Objects..................3-18
Windows Metafiles...3-19
Functions for Displaying or Copying Bitmap Objects3-19
Functions for Retrieving Image Data from Bitmap Objects.............................3-19

Additions to Table 3-16, Graph and Strip Chart Attributes...3-20
Plot Origin Discussion...3-22
Two Y Axis (graphs only) ...3-23

Changes to the Picture Control Image Bits functions..3-24
Image Bits Functions Superseded by New Functions3-24
24-Bit Pixel Depth Supported in Image Bits Functions3-24

Using the System Attributes ...3-24
Additions to Table A-1, User Interface Library Error Codes3-26

New User Interface Library Functions...3-27
AllocBitmapData..3-27
CanvasClear..3-28
CanvasDefaultPen...3-29
CanvasDimRect..3-30
CanvasDrawArc..3-31
CanvasDrawBitmap..3-32
CanvasDrawLine...3-34
CanvasDrawLineTo..3-35
CanvasDrawOval..3-36
CanvasDrawPoint..3-37
CanvasDrawPoly...3-38
CanvasDrawRect...3-39
CanvasDrawRoundedRect...3-40
CanvasDrawText...3-41
CanvasDrawTextAtPoint...3-44
CanvasEndBatchDraw...3-46
CanvasGetClipRect...3-47
CanvasGetPenPosition..3-47
CanvasGetPixel...3-48
CanvasGetPixels...3-50
CanvasInvertRect..3-51
CanvasScroll...3-53
CanvasSetClipRect..3-54
CanvasSetPenPosition...3-55
CanvasStartBatchDraw...3-56
CanvasUpdate...3-57
ClearAxisItems...3-58

Table of Contents

© National Instruments Corporation xi LabWindows/CVI 4.0 Addendum

ClipboardGetBitmap...3-59
ClipboardGetText ...3-60
ClipboardPutBitmap..3-61
ClipboardPutText..3-61
DeleteAxisItem...3-62
DiscardBitmap..3-63
Get3dBorderColors ...3-63
GetAxisItem..3-64
GetAxisItemLabelLength..3-66
GetAxisScalingMode..3-67
GetBitmapData...3-68
GetBitmapFromFile ..3-70
GetBitmapInfo ..3-71
GetCtrlBitmap...3-72
GetCtrlDisplayBitmap...3-74
GetNumAxisItems..3-75
GetPanelDisplayBitmap..3-76
GetSystemAttribute...3-77
InsertAxisItem ..3-78
LoadMenuBarEx...3-79
LoadPanelEx...3-81
MakePoint...3-82
MakeRect..3-83
NewBitmap...3-84
PlotScaledIntensity..3-85
PointEqual ..3-89
PointPinnedToRect ...3-89
PointSet ..3-90
RectBottom...3-91
RectCenter..3-91
RectContainsPoint...3-92
RectContainsRect..3-92
RectEmpty ..3-93
RectEqual...3-94
RectGrow..3-94
RectIntersection..3-95
RectMove..3-95
RectOffset...3-96
RectRight..3-97
RectSameSize...3-97
RectSet..3-98
RectSetBottom..3-98
RectSetCenter...3-99
RectSetFromPoints..3-99
RectSetRight...3-100
RectUnion...3-100

Table of Contents

LabWindows/CVI 4.0 Addendum xii © National Instruments Corporation

ReplaceAxisItem...3-101
SetAxisScalingMode...3-103
SetCtrlBitmap ...3-104
SetSystemAttribute ...3-106

Chapter 4
Updates to the Standard Libraries Reference Manual..4-1
Chapter Contents...4-1

Changes to the ANSI C Library and Low-Level I/O Functions...4-4
Errno Set by File I/O Functions..4-4
New Low-Level I/O Function ..4-4
New ANSI C Library Function ..4-5

fdopen...4-5

Changes to the Formatting and I/O Library..4-7
Improved File I/O Error Reporting...4-7

GetFmtIOError ...4-7
GetFmtIOErrorString..4-8

Changes to the GPIB Library...4-9
Different Levels of Functionality Depending on Platform and GPIB Board4-9

Windows 3.1 ..4-9
Windows 95 ...4-9

Native 32-Bit Driver..4-9
Compatibility Driver ...4-10

Windows NT ..4-10
Limitations on Transfer Size ..4-10
Multithreading ...4-10
Notification of SRQ and Other GPIB Events..4-11

Synchronous Callbacks...4-11
Asynchronous Callbacks...4-11
Driver Version Requirements ...4-11

New Functions ...4-12
ibInstallCallback...4-12
SRQI, RQS, and Auto Serial Polling...4-14

CallbackFunction...4-14
ibNotify ..4-15
SRQI, RQS, and Auto Serial Polling...4-16

CallbackFunction...4-16
Restrictions on Operations in Asynchronous Callbacks............4-17

ThreadIbcnt...4-18
ThreadIbcntl..4-19

Table of Contents

© National Instruments Corporation xiii LabWindows/CVI 4.0 Addendum

ThreadIberr ...4-19
ThreadIbsta ...4-21

Changes to the RS-232 Library...4-23
New Function...4-23

InstallComCallback...4-23

Changes to the Utility Library ..4-27
Corrections to Documentation..4-27

LaunchExecutableEx ..4-27
Modifications to Existing Functions for Windows 95 and NT4-27

DisableTaskSwitching...4-27
LoadExternalModule...4-28

SetSystemDate and SetSystemTime..4-29
EnableInterrupts and DisableInterrupts ...4-29

Revised Error Codes ..4-29
New Functions ...4-33

CVILowLevelSupportDriverLoaded ...4-33
GetBreakOnProtectionErrors...4-34
GetCVIVersion...4-34
GetCurrentPlatform...4-35
GetModuleDir...4-36
LoadExternalModuleEx ..4-37
ReadFromPhysicalMemoryEx...4-39
ReleaseExternalModule...4-40
SetBreakOnLibraryErrors ...4-41
SetBreakOnProtectionErrors ...4-42
WriteToPhysicalMemoryEx..4-43

Easy I/O for DAQ Library ..4-45
Easy I/O for DAQ Library Function Overview ...4-45

Advantages of Using the Easy I/O for DAQ Library4-45
Limitations of Using the Easy I/O for DAQ Library............................4-46
Easy I/O for DAQ Library Function Panels...4-46
Device Numbers..4-48
Channel String for Analog Input Functions ...4-48
Command Strings..4-50
Channel String for Analog Output Functions.......................................4-51
Valid Counters for the Counter/Timer Functions.................................4-51

The Easy I/O for DAQ Function Reference ..4-52
AIAcquireTriggeredWaveforms..4-52
AIAcquireWaveforms ...4-57
AICheckAcquisition..4-59
AIClearAcquisition ...4-59
AIReadAcquisition..4-60
AISampleChannel...4-61

Table of Contents

LabWindows/CVI 4.0 Addendum xiv © National Instruments Corporation

AISampleChannels..4-62
AIStartAcquisition ..4-63
AOClearWaveforms..4-64
AOGenerateWaveforms..4-64
AOUpdateChannel..4-66
AOUpdateChannels...4-66
ContinuousPulseGenConfig..4-67
CounterEventOrTimeConfig ...4-69
CounterMeasureFrequency..4-72
CounterRead...4-75
CounterStart..4-76
CounterStop ..4-76
DelayedPulseGenConfig...4-77
FrequencyDividerConfig...4-79
GetAILimitsOfChannel...4-82
GetChannelIndices..4-84
GetChannelNameFromIndex...4-85
GetDAQErrorString..4-86
GetNumChannels..4-87
GroupByChannel..4-88
ICounterControl ..4-88
PlotLastAIWaveformsPopup...4-90
PulseWidthOrPeriodMeasConfig..4-91
ReadFromDigitalLine ...4-92
ReadFromDigitalPort ..4-94
WriteToDigitalLine...4-96
WriteToDigitalPort ...4-97

Error Conditions ..4-99

Chapter 5
General Updates to LabWindows/CVI ..5-1
Chapter Contents...5-1

Configuring LabWindows/CVI in Windows 95 and NT ..5-2
How To Set Configuration Options ..5-2
Option Descriptions ...5-2

Directory Options ...5-2
cfgdir ..5-2

Changes to the Data Acquisition Library...5-3
Event Function Parameter Data Types Changed for Windows 95 and NT5-3

Source Code Changes Needed..5-4
Differences in Current NI-DAQ® API for Windows NT ...5-4

Table of Contents

© National Instruments Corporation xv LabWindows/CVI 4.0 Addendum

Changes to the Function Tree and Function Panel Editors...5-5
Function Tree Editor ..5-5

Maximum Number of Levels Increased to Eight...5-5
Create DLL Project (Windows 95/NT Only) ..5-5

Function Panel Editor...5-5
VXI Plug & Play Style ...5-6
Numeric Control Supports Additional Data Types ..5-6

Changes to the Programmer’s Toolbox..5-7
Additions to the inifile Instrument Driver...5-7

New Functions to Handle DOS/Windows Pathnames5-7
Easy Tab Instrument Driver Added ..5-7
New Instrument Driver for Regular Expression Matching ..5-8

Appendix A
Customer Communication..A-1

Figures
Figure 2-1. External Compiler Support Dialog Box ..2-5
Figure 2-2. The Create Dynamic Link Library Dialog Box ...2-7
Figure 2-3. The Create Static Library Dialog Box...2-9
Figure 2-4. Advanced Distribution Kit Options Dialog Box..2-12
Figure 2-5. The Select Variable or Expression Dialog Box ...2-24

Tables

Table 1-1. Error Messages for Appendix A, Programmer Reference Manual1-41

Table 2-1. Platforms Where Utility Functions Need Low-Level Support Driver2-11

Table 3-1. Canvas Control Attributes...3-13
Table 3-2. Values for ATTR_DRAW_POLICY...3-14
Table 3-3. Values for ATTR_OVERLAPPED_POLICY ...3-14
Table 3-4. Values for ATTR_PEN_MODE..3-15
Table 3-5. Values and Macros for Rect Structures..3-16
Table 3-6. Values for ATTR_PLOT_ORIGIN ...3-23
Table 3-7. System Attributes..3-25

Table 4-1. Easy I/O for DAQ Function Tree ..4-46
Table 4-2. Valid Counters..4-51
Table 4-3. Definitions of Am 9513: Counter +1...4-71
Table 4-4. Adjacent Counters...4-73
Table 4-5. Easy I/O for DAQ Error Codes ...4-99

Table 5-1. Typedefs and Intrinsic Types for Different Platforms..5-3

{ RD c:_matt\\LW-CVI\\addncvi4\\master\\8-5X11\\d-atm.doc }
{ RD c:_matt\\LW-CVI\\addncvi4\\master\\8-5X11\\05ch1cvi.doc }
{ RD c:_matt\\LW-CVI\\addncvi4\\master\\8-5X11\\06ch2cvi.doc }
{ RD c:_matt\\LW-CVI\\addncvi4\\master\\8-5X11\\07ch3cvi.doc }
{ RD c:_matt\\LW-CVI\\addncvi4\\master\\8-5X11\\08ch4cvi.doc }
{ RD c:_matt\\LW-CVI\\addncvi4\\master\\8-5X11\\09ch5cvi.doc }
{ RD c:_matt\\LW-CVI\\addncvi4\\master\\8-5X11\\e-appa.doc }

© National Instruments Corporation xvii LabWindows/CVI 4.0 Addendum

About This Manual
The LabWindows/CVI 4.0 Addendum describes new features of LabWindows/CVI version 4.0.
The information in this manual supplements information in the existing manual set.

Organization of This Manual
The LabWindows/CVI 4.0 Addendum is organized as follows.

• Chapter 1, Updates to the Programmer Reference Manual, contains updates to the
LabWindows/CVI Programmer Reference Manual.

• Chapter 2, Updates to the User Manual, contains updates to the LabWindows/CVI User
Manual.

• Chapter 3, Updates to the User Interface Reference Manual, contains updates to the
LabWindows/CVI User Interface Reference Manual.

• Chapter 4, Updates to the Standard Libraries Reference Manual, contains updates to the
LabWindows/CVI Standard Libraries Reference Manual.

• Chapter 5, General Updates to LabWindows/CVI Manuals, contains general updates to the
LabWindows/CVI documentation.

• Appendix A, Customer Communication, contains forms you can use to request help from
National Instruments or to comment on our products and manuals.

The main sections of this manual correspond to specific manuals in the LabWindows/CVI 3.1
manual set. You may want to remove individual sections from the addendum and keep them
with the corresponding manual from version 3.1 for convenient, comprehensive reference.

Conventions Used in This Manual
The following conventions are used in this manual:

bold Bold text denotes menus, menu items, and VI input and output parameters.

italic Italic text denotes emphasis, a cross reference, or an introduction to a key
concept. Italic text also denotes a variable such as filename or N when it
appears in a text passage.

About This Manual

LabWindows/CVI 4.0 Addendum xviii © National Instruments Corporation

bold italic Bold italic text denotes a note, caution, or warning.

monospace Monospace font denotes text or characters that you enter using the keyboard. File
names, directory names, drive names, sections of code, programming examples,
syntax examples, and messages and responses that the computer automatically
prints to the screen also appear in this font.

» The » symbol leads you through nested menu items and dialog box options to a
final action. The sequence File » Page Setup » Options » Substitute Fonts
directs you to pull down the File menu, select the Page Setup item, select
Options, and finally select the Substitute Fonts option from the last dialog box.

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and terms are listed in the
Glossary.

Related Documentation
The following documents, the manual set for LabWindows/CVI, contain information that you
may find helpful as you use this manual.

• Getting Started with LabWindows/CVI

• LabWindows/CVI User Manual

• LabWindows/CVI User Interface Reference Manual

• LabWindows/CVI Programmer Reference Manual

• LabWindows/CVI Instrument Driver Developers Guide

• LabWindows/CVI Standard Libraries Reference Manual

• LabWindows/CVI Advanced Analysis Reference Manual

• C: A Reference Manual

Customer Communication
National Instruments wants to receive your comments on our products and manuals. We are
interested in the applications you develop with our products, and we want to help if you have
problems with them. To make it easy for you to contact us, this manual contains comment and
technical support forms for you to complete. These forms are in the Customer Communication
appendix at the end of this manual.

© National Instruments Corporation 1-1 LabWindows/CVI 4.0 Addendum

Chapter 1
Updates to the Programmer
Reference Manual

Chapter Contents
Compiler/Linker Enhancements for Windows 95 and NT... 4
Loading DLLs in LabWindows/CVI... 5

Loading 16-bit DLLs under Windows 3.1 ... 5
Loading 32-bit DLLs under Windows 95 and NT ... 5

DLLs for Instrument Drivers and User Libraries.. 6
Using The LoadExternalModule Function ... 6
Link Errors when Using DLL Import Libraries.. 6
DLL Path (.pth) Files No Longer Supported.. 6
16-Bit DLLs No Longer Supported ... 6
Generating an Import Library .. 6
Default Unloading/Reloading Policy.. 7

Compatibility with External Compilers... 7
Choosing Your Compatible Compiler ... 7
Object Files, Library Files, and DLL Import Libraries .. 8
DLLs... 8

Structure Packing .. 8
Bit Fields... 9
Returning Floats and Doubles.. 9
Returning Structures .. 9
Enum Sizes.. 9
Long Doubles .. 9

Differences with the External Compilers ... 10
External Compiler Versions Supported ... 10
Required Preprocessor Definitions .. 10

Creating Executables and DLLs in External Compilers for Use with the LabWindows/CVI
Libraries ... 11

Include Files for the ANSI C Library and the LabWindows/CVI Libraries.................... 12
Standard Input/Output Window... 12
Multithreading and the LabWindows/CVI Libraries.. 12

Multithreaded Safe Libraries ... 12
Libraries that are Not Multithreaded Safe .. 13

Resolving Callback References From .UIR Files... 13
Linking to Callback Functions Not Exported From a DLL 14

Resolving References from Modules Loaded at Run-Time.. 14
Resolving References to Non-CVI Symbols .. 15
Resolving Run-Time Module References to Symbols Not Exported From a DLL15

Updates to the Programmer Reference Manual Chapter 1

LabWindows/CVI 4.0 Addendum 1-2 © National Instruments Corporation

Run State Change Callbacks Are Not Available in External Compilers 16
Calling InitCVIRTE and CloseCVIRTE.. 16

Creating Object and Library Files in External Compilers for Use in LabWindows/CVI 17
Microsoft Visual C/C++.. 18
Borland C/C++ command line compiler .. 18
WATCOM C/C++... 18
Symantec C/C++... 19

Creating Executables in LabWindows/CVI... 19
Creating DLLs in LabWindows/CVI .. 19

Customizing an Import Library ... 20
Preparing Source Code for Use in a DLL .. 20

Calling Convention for Exported Functions... 21
Exporting DLL Functions and Variables.. 21
Marking Imported Symbols in Include File Distributed with DLL..................... 22
Recommendations... 23

Automatic Inclusion of Type Library Resource for Visual Basic 24
Creating Static Libraries in LabWindows/CVI.. 24
Creating Object Files in LabWindows/CVI... 25
Calling Windows SDK Functions in LabWindows/CVI.. 25

Windows SDK Include Files ... 25
Using Windows SDK Functions for User Interface Capabilities 26
Using Windows SDK Functions to Create Multiple Threads ... 26
Automatic Loading of SDK Import Libraries .. 26

Setting Up Include Paths for LabWindows/CVI, ANSI C, and SDK Libraries 27
Compiling in LabWindows/CVI for Linking in LabWindows/CVI................................ 27
Compiling in LabWindows/CVI for Linking in an External Compiler........................... 27
Compiling in an External Compiler for Linking in an External Compiler...................... 27
Compiling in an External Compiler for Linking in LabWindows/CVI........................... 28

Run-Time Stack Size .. 28
No Floating Point Coprocessor Required .. 28
New Predefined Macros.. 28

General Compiler/Linker Enhancements.. 30
Maximum Nesting of Include Files... 30
C Language Extensions... 30

Calling Conventions (Windows 95/NT Only).. 30
Import and Export Qualifiers ... 31
C++-Style Comment Markers .. 32

Duplicate Typedefs ... 32
Structure Packing Pragma (Windows 3.1 and Windows 95/NT only) 32
Program Entry Points (Windows 95 and NT only) .. 33

Include Paths .. 33
Non-Project-Specific User-Defined Include Paths ... 33
VXI Plug & Play Include Directory .. 33
Complete Search Precedence... 33

Searching for Instrument Driver DLLs (Windows 3.1 Only)... 34

Chapter 1 Updates to the Programmer Reference Manual

© National Instruments Corporation 1-3 LabWindows/CVI 4.0 Addendum

Correction to Documentation .. 34
Searching for DLLs Associated with .fp Files ... 34

Run State Change Callbacks - Clarification .. 35

Distributing Executables, DLLs, and Libraries in Windows 95... 36
The Run-Time Library DLLs.. 36

Distributing DLLs You Create .. 37
Minimum System Requirements ... 37

No Math Coprocessor Required... 37
Configuring the Run-Time Library DLLs ... 37
Location of Files on the Target Machine... 37

Rules for Using Statically Linked DLL Files... 38
Rules for Loading Files Using LoadExternalModule... 38

Distributing Libraries in Windows 95 and NT ... 39

Handling Hardware Interrupts under Windows 95 and NT.. 40

New Compiler/Linker/Run-Time Errors and Warnings .. 41

Updates to the Programmer Reference Manual Chapter 1

LabWindows/CVI 4.0 Addendum 1-4 © National Instruments Corporation

Compiler/Linker Enhancements for
Windows 95 and NT
The compiler/linker capabilities of LabWindows/CVI for Windows 95 and NT are significantly
enhanced, compared to LabWindows/CVI for Windows 3.1. A key element is compatibility with
four external 32-bit compilers: Microsoft Visual C/C++, Borland C/C++, WATCOM C/C++,
and Symantec C/C++. In this manual, the four compilers are referred to as the compatible
external compilers.

In LabWindows/CVI under Windows 95 and NT, you can now do the following.

• Load 32-bit DLLs, via the standard import library mechanism

• Create 32-bit DLLs and DLL import libraries

• Create library files as well as object files

• Call the LabWindows/CVI libraries from executables or DLLs created in any of the four
compatible external compilers

• Create object files, library files, and DLL import libraries that can be used in the compatible
external compilers

• Load object files, library files, and DLL import libraries created in any of the compatible
external compilers.

• Call Windows SDK functions

• Have a run-time stack of up to 1,000,000 bytes

• Run on a machine without a floating point coprocessor

This chapter discusses these new capabilities.

Chapter 1 Updates to the Programmer Reference Manual

© National Instruments Corporation 1-5 LabWindows/CVI 4.0 Addendum

Loading DLLs in LabWindows/CVI
Chapter 2, Using Loadable Compiled Modules, of the LabWindows/CVI Programmer Reference
Manual discusses the different types of loadable compiled modules and the different ways you
can use them. One type of loadable compiled module is a DLL (dynamic link library). Many
changes have been made in LabWindows/CVI between Windows 3.1 and Windows 95/NT in
how DLLs are handled.

Loading 16-bit DLLs under Windows 3.1

Under Windows 3.1, LabWindows/CVI can load 16-bit DLLs only. Because LabWindows/CVI
for Windows 3.1 is a 32-bit program, it cannot use the standard Windows 16-bit DLL import
libraries. Instead, LabWindows/CVI needs special “glue code” to link to 16-bit DLLs. In some
cases you can specify the DLL file directly in your project, and LabWindows/CVI generates the
glue code automatically. In other cases, you modify the glue code source and compile it into an
object file, which you substitute for the DLL file in your project. (For more information, see the
DLL Glue Code section in Chapter 2, Using Loadable Compiled Modules, of the
LabWindows/CVI Programmer Reference Manual.)

If a DLL is being used as an instrument driver or a user library, then either it must be in the
same directory as the function panel (.fp) file, or there must be a DLL path (.pth) file in the
same directory. The DLL path file contains the pathname of the DLL. If the pathname contains
no directories, the LabWindows/CVI finds the DLL using the standard Windows DLL search
algorithm. . (For more information, see the DLL Search Precedence section in Chapter 2, Using
Loadable Compiled Modules, of the LabWindows/CVI Programmer Reference Manual.)

Note: Starting in LabWindows/CVI version 4.0, if there is no DLL or DLL path file in the
same directory as the .fp file, LabWindows/CVI looks for a DLL with the same base
name as the .fp file using the standard Windows search algorithm.

Loading 32-bit DLLs under Windows 95 and NT

Under Windows 95 and NT, LabWindows/CVI can load 32-bit DLLs. Because the environment
is 32-bit, special glue code is no longer needed. LabWindows/CVI links to DLLs via the
standard 32-bit DLL import libraries that you generate when you create 32-bit DLLs with any of
the compilers. Because DLLs are linked in this way, you can no longer specify a DLL file
directly in your project. You must specify the DLL import library file instead.

Updates to the Programmer Reference Manual Chapter 1

LabWindows/CVI 4.0 Addendum 1-6 © National Instruments Corporation

DLLs for Instrument Drivers and User Libraries

Under Windows 95 and NT, a DLL is never directly associated with an instrument driver or user
library. Instead, an instrument driver or user library can be associated with a DLL import library.

In general, if the program for an instrument driver or user library is contained in a DLL, there
must be a DLL import library in the same directory as the function panel (.fp) file. An
exception is made to facilitate using VXI Plug & Play instrument driver DLLs. When you install
a VXI Plug & Play instrument driver, the DLL import library is not placed in the same directory
as the .fp file. If a .fp file is under the VXI Plug & Play directory, LabWindows/CVI
searches for an import library in the VXI Plug & Play import library directory before it looks for
a program file in the directory of the .fp file.

Using The LoadExternalModule Function

When using the LoadExternalModule function to load a DLL at run-time, you must specify
the pathname of the DLL import library, not the name of the DLL.

Link Errors when Using DLL Import Libraries

A DLL import library must not contain any references to symbols that are not exported by the
DLL. If it does, LabWindows/CVI reports a link error. (If you load the DLL using
LoadExternalModule , the GetExternalModuleAddr function reports an undefined
references (-5) error.) You can solve this problem by using LabWindows/CVI to generate an
import library. See Generating an Import Library later in this section.

DLL Path (.pth) Files No Longer Supported

The DLL import library contains the file name of the DLL. LabWindows/CVI uses the standard
Windows DLL search algorithm to find the DLL. Thus, DLL path (.pth) files do not work
under Windows 95 and NT.

16-Bit DLLs No Longer Supported

LabWindows/CVI for Windows 95 and NT does not load 16-bit DLLs. If you want to do so, you
must obtain a 32-to-16-bit thunking DLL and a 32-bit DLL import library.

Generating an Import Library

If you do not have a DLL import library or the one you have contains references not exported by
the DLL, you can generate an import library in LabWindows/CVI. You must have an include
file that contains the declarations of all of the functions and global variables you want to access

Chapter 1 Updates to the Programmer Reference Manual

© National Instruments Corporation 1-7 LabWindows/CVI 4.0 Addendum

from the DLL. Load the include file into a Source window, and execute the Generate DLL
Import Library command in the Options menu.

Default Unloading/Reloading Policy

Between Windows 3.1 and Windows 95/NT, some fundamental changes were made in the way
DLLs being used by multiple processes are handled.

In Windows 3.1, a DLL being used by multiple processes has only one data space. In Windows
95/NT, a separate data space is created for each process that is using the DLL.

In Windows 3.1, a DLL is not notified each time it is loaded or unloaded by a process. It is
notified only when the first process loads it and the last process unloads it. In Windows 95/NT, a
DLL is notified each time it is loaded or unloaded by a process.

In LabWindows/CVI for Windows 3.1, DLLs are, by default, kept in memory between
executions of user programs in the development environment. The purpose is to save the time it
takes to reload DLLs on each run. Because Windows 3.1 DLLs cannot rely on being notified
that they are being loaded or unloaded, they should be able to operate correctly under such
conditions. You can cause DLLs to be reloaded before each run by setting the Reload DLLs
Before Each Run option in the Run Options dialog box.

In LabWindows/CVI for Windows 95 and NT, the default has been changed. DLLs are, by
default, unloaded after each execution of a user program in the development environment. This
behavior more accurately simulates what happens when you execute a standalone executable,
and it is more suitable for Windows 95 and NT DLLs that rely on load/unload notification on
each execution of a program. You can change the default behavior by turning off the Unload
DLLs After Each Run option in the Run Options dialog box.

Compatibility with External Compilers
LabWindows/CVI for Windows 95 and NT can be compatible at the object code level with any
of the four compatible external compilers (Microsoft Visual C/C++, Borland C/C++, WATCOM
C/C++, and Symantec C/C++). Because these compilers are not compatible each other at the
object code level, LabWindows/CVI can be compatible with only one external compiler at a
time. In this manual, any of the four compilers are referred to selected compatible compiler.

Choosing Your Compatible Compiler

When installing LabWindows/CVI, you must choose your compatible compiler. If sometime
later you want to change your choice of compatible compiler, you can run the installation
program and choose the option to change your compatible compiler.

Updates to the Programmer Reference Manual Chapter 1

LabWindows/CVI 4.0 Addendum 1-8 © National Instruments Corporation

The selected compatible compiler is indicated in the dialog box that appears when you execute
the Compiler Options command in the Options menu of the Project window.

Object Files, Library Files, and DLL Import Libraries

If you create an object file, library file, or DLL import library in LabWindows/CVI, the file can
be used only in the selected compatible compiler or in LabWindows/CVI under the same
compatibility choice.

If you load an object file, library file, or DLL import library file in LabWindows/CVI, the file
must have been created either in the selected compatible compiler or in LabWindows/CVI under
the same compatibility choice. If you have a DLL but you do not have a compatible DLL import
library, you can create one in LabWindows/CVI. You must have an include file that contains the
declarations of all of the functions and global variables you want to access from the DLL. Load
the include file into a Source window, and execute the Generate DLL Import Library
command in the Options menu.

DLLs

In general, a DLL can be used without regard to compiler used to create it. Only the DLL import
library must have been created using the correct compiler or compatibility choice. There are
some cases, however, in which a DLL created using one compiler cannot be used in an
executable or DLL created using another compiler. If you want to create DLLs that can be used
in different compilers, you should design the API for your DLL to avoid such problems. The
following are the areas in which the DLLs created in external compilers are not fully compatible.

Structure Packing

The compilers differ in their default maximum alignment of elements within structures.

If your DLL API uses structures, you should guarantee compatibility among the different
compilers by using the pack pragma to specify a specific maximum alignment factor.

You should do this in the DLL include file, before the definitions of the structures. (The
particular alignment factor you set does not matter.) After the structure definitions, you should
reset the maximum alignment factor back to the default. Example:

#pragma pack (4) /* set maximum alignment to 4 */

typedef struct {
char a;
int b;

} MyStruct1;

typdef struct {
char a;

Chapter 1 Updates to the Programmer Reference Manual

© National Instruments Corporation 1-9 LabWindows/CVI 4.0 Addendum

double b;
} MyStruct2;

#pragma pack () /* reset max alignment to default */

Bit Fields

Borland C/C++ uses the smallest number of bytes needed to hold the bit fields specified in a
structure. The other compilers always use four-byte elements. You can force compatibility by
adding a dummy bit field of the correct size to pad the set of contiguous bit fields to fit exactly
into a four-byte element. Example:

typedef struct {
 int a:1;
 int b:1;
 int c:1;
 int dummy:29; /* pad to 32 bits */
} MyStruct;

Returning Floats and Doubles

The compilers return float and double scalar values using different mechanisms. This is true
of all calling conventions, including __stdcall . The only solution for this problem is to
change your DLL API to use output parameters instead of return values for double and float
scalars.

Returning Structures

For functions not declared with the __stdcall calling convention, the compilers return
structures using different mechanisms. For functions declared with __stdcall , the compilers
return structures in the same way, except for 8-byte structures. We recommend that your DLL
API use structure output parameters instead of structure return values.

Enum Sizes

By default, WATCOM uses the smallest integer size (1-byte, 2-bytes, or 4-bytes) needed to
represent the largest enum value. The other compilers always use four bytes. You should force
compatibility by using the -ei (Force Enums to Type Int) option with the WATCOM compiler.

Long Doubles

In Borland C/C++, long double values are ten bytes. In the other compilers, they are eight
bytes. (In LabWindows/CVI, they are always eight bytes). You should avoid using long
double in your DLL API.

Updates to the Programmer Reference Manual Chapter 1

LabWindows/CVI 4.0 Addendum 1-10 © National Instruments Corporation

Differences with the External Compilers

LabWindows/CVI does not work with all of the non-ANSI extensions provided by each external
compiler. Also, in cases where ANSI does not specify the exact implementation,
LabWindows/CVI does not always agree with the external compilers. Most of these differences
are obscure and rarely encountered. The following are the most important differences.

• wchart_t is only one-byte in LabWindows/CVI.

• 64-bit integers do not exist in LabWindows/CVI.

• long double values are 10 bytes in Borland C/C++ but 8 bytes in LabWindows/CVI.

• You cannot use structured exception handling in LabWindows/CVI.

• You cannot use the WATCOM C/C++ cdecl calling convention in LabWindows/CVI for
functions that return float or double scalar values or structures. (In WATCOM, cdecl
is not the default calling convention.)

External Compiler Versions Supported

The following versions of each external compiler work with LabWindows/CVI for Windows 95
and NT:

• Microsoft Visual C/C++, version 2.2 or higher

• Borland C/C++, version 4.51 or higher

• WATCOM C/C++, version 10.5 or higher

• Symantec C/C++, version 7.2 or higher

Required Preprocessor Definitions

When using an external compiler to compile source code that includes any of the
LabWindows/CVI include files, add the following to your Preprocessor Definitions.

_NI_mswin32_

Chapter 1 Updates to the Programmer Reference Manual

© National Instruments Corporation 1-11 LabWindows/CVI 4.0 Addendum

Creating Executables and DLLs in External
Compilers for Use with the
LabWindows/CVI Libraries
Under Windows 95 and NT, you can use the LabWindows/CVI libraries in any of the four
compatible external compilers. You can create executables and DLLs that call the
LabWindows/CVI libraries. All of the libraries are contained in DLLs. (These DLLs are also
used by executable files created in LabWindows/CVI.) DLL import libraries and a startup
library, all compatible with your external compiler, are in the cvi\extlib directory. Never
use the .lib files in the cvi\bin directory.

You must always include the following two libraries in your external compiler project.

cvisupp.lib /* startup library */
cvirt.lib /* import library to DLL containing: */
 /* User Interface Library */
 /* Formatting and I/O Library */
 /* RS-232 Library */
 /* DDE Library */
 /* TCP Library */
 /* Utility Library */

You may also add the following static library file from cvi\extlib to your external compiler
project.

analysis.lib /* Analysis or Advanced Analysis Library */

You may also add the following DLL import library files from cvi/extlib to you external
compiler project.

gpib.lib /* GPIB/GPIB 488.2 Library */
dataacq.lib /* Data Acquisition Library */
easyio.lib /* Easy I/O for DAQ Library */
visa.lib /* VISA Transition Library */
nivxi.lib /* VXI Library */

If you are using an instrument driver that makes references to both the GPIB and VXI libraries,
you can include both gpib.lib and nivxi.lib to resolve the references to symbols in those
libraries. If you do not have access to one of these files, you can replace it with one of following
files:

gpibstub.obj /* stub GPIB functions */
vxistub.obj /* stub VXI functions */

Updates to the Programmer Reference Manual Chapter 1

LabWindows/CVI 4.0 Addendum 1-12 © National Instruments Corporation

Include Files for the ANSI C Library and the
LabWindows/CVI Libraries

The cvirt.lib import library contains symbols for all of the LabWindows/CVI libraries,
except the ANSI C standard library. When you create an executable or DLL in an external
compiler, you use the compiler’s own ANSI C standard library. Because of this, you must use
the external compiler’s include files for the ANSI C library when compiling source files.
Although the include files for the other LabWindows/CVI libraries are in the cvi\include
directory, the LabWindows/CVI ANSI C include files are in the cvi\include\ansi
directory. Thus, you can specify cvi\include as an include path in your external compiler
and still use the external compiler’s version of the ANSI C include files.

Note: You need to use the external compiler’s ANSI C include files only when compiling a
source file that you intend to link using the external compiler. If you intend to link it
in LabWindows/CVI, you need to use the LabWindows/CVI ANSI C include files. This
holds true regardless of which compiler you use to compile the source file.

For more information, see the Setting Up Include Paths for LabWindows/CVI, ANSI C, and SDK
Libraries section later in this chapter.

Standard Input/Output Window

One effect of using the external compiler’s ANSI C standard library, is that the printf and
scanf functions do not use the LabWindows/CVI Standard Input/Output window. If you want
to use printf and scanf , you must create a console application (called a character-mode
executable by WATCOM).

You can continue to use the LabWindows/CVI Standard Input/Output Window by calling the
FmtOut and ScanIn functions in the Formatting and I/O library.

Multithreading and the LabWindows/CVI Libraries

If you are using multithreading in an external compiler, you need to know which of the
LabWindows/CVI libraries are multithreaded safe.

Multithreaded Safe Libraries

The following libraries can be used in more than one thread at a time:

• Analysis and Advanced Analysis

• GPIB (if you are using a native 32-bit driver)

Chapter 1 Updates to the Programmer Reference Manual

© National Instruments Corporation 1-13 LabWindows/CVI 4.0 Addendum

• VXI

• VTL

• RS-232

• Data Acquisition

• Easy I/O for DAQ

Also, each of the compatible external compilers includes a multithreaded safe version of the
ANSI C standard library.

Note: Although you can use Windows SDK function to create threads in a LabWindows/CVI
program, none of LabWindows/CVI libraries are multithreaded safe when called from
programs linked in LabWindows/CVI.

Libraries that are Not Multithreaded Safe

Currently, the following LabWindows/CVI libraries must be used in only one thread at a time:

• User Interface

• Formatting and I/O

• DDE

• TCP

• Utility

• GPIB (if you are using a “Windows 3.1 compatibility” driver)

Resolving Callback References From .UIR Files

When you link your program in LabWindows/CVI, LabWindows/CVI keeps a table of the non-
static functions that are in your project. When your program calls LoadPanel or
LoadMenuBar , the LabWindows/CVI User Interface Library uses this table to find the
callback functions associated with the objects being loaded from the User Interface Resource
(.uir) file. This is true whether you are running your program in the LabWindows/CVI
development environment or as a standalone executable.

When you link your program in an external compiler, no such table is made available to the User
Interface Library. Instead, you must use LabWindows/CVI to generate an object file containing
the necessary table. Create a LabWindows/CVI project containing the .uir files used by your
program (if you do not already have one). Execute the External Compiler Support command
in the Build menu of the Project window. A dialog box appears. In the UIR Callbacks Object
File control, enter the pathname of the object file to be generated. When you click on the Create

Updates to the Programmer Reference Manual Chapter 1

LabWindows/CVI 4.0 Addendum 1-14 © National Instruments Corporation

button, the object file is generated with a table containing the names of all of the callback
functions referenced in all of the .uir files in the currently loaded project. If the project is
loaded and you modify and save any of these .uir files, the object file is regenerated to reflect
the changes. You must include this object file in the external compiler project you use to create
the executable. Also, you must call InitCVIRTE at the beginning of your main or WinMain
function. See the InitCVIRTE and CloseCVIRTE section later in this chapter.

Linking to Callback Functions Not Exported From a DLL

Normally, the User Interface Library searches for callback functions only in the table of
functions in the executable. When you load a panel or menu bar from a DLL, you may want to
link to non-static callback functions contained in, but not exported by, the DLL. You can do this
by calling the LoadPanelEx and LoadMenuBarEx functions. When you pass the DLL
module handle to LoadPanelEx and LoadMenuBarEx , the User Interface Library searches
the table of callback functions contained in the DLL before searching the table contained in the
executable. Refer to Chapter 3 of this document for detailed information on LoadPanelEx and
LoadMenuBarEx .

If you create your DLL in LabWindows/CVI, the table of functions is included in the DLL
automatically. If you create your DLL using an external compiler, you must generate an object
file containing the necessary table. Create a LabWindows/CVI project containing the .uir files
loaded by your DLL (if you do not already have one). Execute the External Compiler Support
command in the Build menu of the Project window. A dialog box appears. In the UIR
Callbacks Object File control, enter the pathname of the object file to be generated. When you
click on the Create button, the object file is generated with a table containing the names of all of
the callback functions referenced in all of the .uir files in the currently loaded project. If the
project is loaded and you modify and save any of these .uir files, the object file is regenerated
to reflect the changes. You must include this object file in the external compiler project you use
to create the DLL. Also, you must call InitCVIRTE and CloseCVIRTE in your DLLMain
function. See the InitCVIRTE and CloseCVIRTE section later in this chapter.

Resolving References from Modules Loaded at Run-Time

Note: This section does not apply if you are using LoadExternalModule to load only
DLLs (via DLL import libraries).

Unlike DLLs, object and static library files can contain unresolved references. If you call
LoadExternalModule to load an object or static library file at run-time, the Utility Library
must resolve those references using function and variable symbols from the executable or from
previously loaded run-time modules. A table of symbols must be available in the executable.
When you link your program in LabWindows/CVI, a symbol table is automatically included.
This is true whether you are running your program in the LabWindows/CVI development
environment or as a standalone executable.

Chapter 1 Updates to the Programmer Reference Manual

© National Instruments Corporation 1-15 LabWindows/CVI 4.0 Addendum

When you link your program in an external compiler, no such table is made available to the
Utility Library; LabWindows/CVI makes available two object files for this purpose.

• Include cvi\extlib\refsym.obj in your external compiler project if your run-time
modules reference any symbols in the User Interface, Formatting and I/O, RS-232, DDE,
TCP, or Utility Library.

• Include cvi\extlib\arefsym.obj your external compiler project if your run-time
modules reference any symbols in the ANSI C standard library. (If you need to use this
object file and you are using Borland C/C++ to create your executable, you must choose
Static Linking for the Standard Libraries. In the IDE, this can be done in the New Target and
Target Expert dialog boxes.)

Resolving References to Non-CVI Symbols

If your run-time modules reference any other symbols from your executable, you must use
LabWindows/CVI to generate an object file containing a table of those symbols. Create an
include file containing complete declarations of all of the symbols your run-time modules
reference from the executable. The include file may contain nested #include statements and
may contain executable symbols that your run-time modules do not reference. If your run-time
module references any of the commonly used Windows SDK functions, you can use the
cvi\sdk\include\basicsdk.h file.

Execute the External Compiler Support command in the Build menu of the Project window. A
dialog box appears. Checkmark the Using Load External Module checkbox. The Other
Symbols checkbox should already be checkmarked. Enter the pathname of the include file in the
Header File control. Enter the pathname of the object file to be generated in the Object File
control. Click on the Create button to the right of the Object File control.

Include the object file in the external compiler project you use to create your executable. Also,
you must call InitCVIRTE at the beginning of your main or WinMain function. See the
InitCVIRTE and CloseCVIRTE section later in this chapter.

Resolving Run-Time Module References to Symbols Not Exported From a
DLL

Normally, the Utility Library LoadExternalModule function resolves run-time module
references using only symbols in your executable or previously loaded run-time modules. When
you load an object or static library file from a DLL, you may want to resolve references from
that module using non-static symbols contained in, but not exported by, the DLL. You can do
this by calling the LoadExternalModuleEx function. When you pass the DLL module
handle to LoadExternalModuleEx , the Utility Library searches the symbol table contained
in the DLL before searching the table contained in the executable. Refer to Chapter 4 of this
document for detailed information on LoadExternalModuleEx .

Updates to the Programmer Reference Manual Chapter 1

LabWindows/CVI 4.0 Addendum 1-16 © National Instruments Corporation

If you create your DLL in LabWindows/CVI, the table of symbols is included in the DLL
automatically. If you create your DLL using an external compiler, no such table is made
available to the Utility Library. You must include in your DLL one or more object files
containing the necessary symbol tables. You can do this for a DLL in the same manner as for an
executable, which is described previously in this section. You must call InitCVIRTE and
CloseCVIRTE in your DLLMain function. See the InitCVIRTE and CloseCVIRTE
section later in this chapter.

Run State Change Callbacks Are Not Available in External
Compilers

When you use a compiled module in LabWindows/CVI, you can arrange for it to be notified of a
change in the execution status (start, stop, suspend, resume). This is done through a callback
function, which is always named __RunStateChangeCallback. This is described in detail
in the section Special Considerations When Using a Loadable Compiled Module, in Chapter 2,
Using Loadable Compiled Modules, of the LabWindows/CVI Programmer Reference Manual.

The run state change callback capability is necessitated by the fact that when you run a program
in the LabWindows/CVI development environment, it is executed as part of the
LabWindows/CVI process. When your program terminates, the operating system does not clean
up as it does when a process terminates. LabWindows/CVI performs cleans up as much as it can,
but your compiled module may need to do more. Also, if the program is suspended for
debugging purposes, your compiled module may need to disable interrupts.

When you run an executable created in an external compiler, it is always executed as a separate
process, even if you are debugging it. Thus, the run state change callback facility is not needed
and does not work. When linking with an external compiler, having a function called
__RunStateChangeCallback in more than one object file causes a link error. If you need
a run state change callback in a compiled module that you intend to use both in
LabWindows/CVI and an external compiler, it is recommended that you put it in a separate
source file and create a .lib file instead of an .obj file.

Calling InitCVIRTE and CloseCVIRTE

If you link an executable (or DLL) in an external compiler, you may need to call the
InitCVIRTE function at the beginning of your main or WinMain (or DLLMain) function.
The call is necessary if you have functions in your executable (or non-exported functions in your
DLL) that are needed to resolve callback references from .uir files or needed to resolve
external references in .obj or .lib files loaded using LoadExternalModule . See the
Resolving Callback References From .UIR Files and Resolving References from Modules Loaded
at Run-Time sections earlier in this chapter.

Chapter 1 Updates to the Programmer Reference Manual

© National Instruments Corporation 1-17 LabWindows/CVI 4.0 Addendum

For an executable, the code should be as follows.

#include <cvirte.h>
main() /* or WinMain(…………) */
{

if (InitCVIRTE(0) == 0)
{
return (-1); /* out of memory */
}

/* your other code */
}

For a DLL, you also need to call CloseCVIRTE in DLLMain . The code should be as follows.

#include <cvirte.h>

int __stdcall DLLMain (void *hinstDLL, int fdwReason, void *lpvReserved)
{

if (fdwReason == DLL_PROCESS_ATTACH)
{
if (InitCVIRTE (hinstDLL) == 0)

return 0; /* out of memory */
/* your other ATTACH code */
}

else if (fdwReason == DLL_PROCESS_DETACH)
{
/* your other DETACH code */
CloseCVIRTE ();
}

 return 1;
}

Note: It is harmless, but unnecessary, to call these functions when you link your executable
in LabWindows/CVI.

Creating Object and Library Files in
External Compilers for Use in
LabWindows/CVI
When you use an external compiler to create an object or library file for use in
LabWindows/CVI, you must use the include files in the cvi\include and
cvi\sdk\include directories. Be sure that these directories have priority over the default
paths for the compiler’s C library and SDK library include files.

When you use an external compiler to create an object or library file for use in
LabWindows/CVI, you must choose the compiler options carefully. For all compilers,
LabWindows/CVI is designed to work with the default options as much as possible. In some

Updates to the Programmer Reference Manual Chapter 1

LabWindows/CVI 4.0 Addendum 1-18 © National Instruments Corporation

cases, however, you need to choose options that override the defaults. Additionally, there may be
some defaults which you must not override.

Microsoft Visual C/C++

LabWindows/CVI is compatible with all of the defaults.

You should not use the following options to override the default settings:

/J (Unsigned Characters)
/Zp (Struct Member Alignment)
/Ge (Stack Probes)
/Gh (Profiling)
/Gs (Stack Probes)

Borland C/C++ command line compiler

LabWindows/CVI is compatible with all of the defaults.

You should not use the following options to override the default settings:

-a (Data Alignment)
-K (Unsigned Characters)
-u- (Turn Off Generation of Underscores)
-N (Test Stack Overflow)
-p (Pascal Calling Convention)
-pr (Register Calling Convention)
Correct Pentium FDIV Flaw

WATCOM C/C++

You must use the following options to override the default settings:

-ei (Force Enums to Type Int)
-zw (Compile for Windows)
-4s (80486 Stack-Based Calling)
-s (Disable Stack Depth Checking)
-j (Change Char Default to Signed)
-fpi87 (Generate In-Line 80x87 Code)

You should not use the following option to override the default settings:

-Zp (Structure Alignment)

Chapter 1 Updates to the Programmer Reference Manual

© National Instruments Corporation 1-19 LabWindows/CVI 4.0 Addendum

Symantec C/C++

You must use the following options to override the default settings:

-mn (Windows 95/NT Memory Model)
-f (Generate In-Line 80x87 Code)

You should not use the following options to override the default settings:

-a (Struct Alignment)
-P (Use Pascal Calling Convention)
-s (Check Stack Overflow)

Note: Certain specialized options may generate symbol references that cause link errors in
LabWindows/CVI. If you encounter a link error on a symbol in an externally compiled
module and you do not recognize the symbol, try changing your external compiler
options.

Creating Executables in LabWindows/CVI
You can create true 32-bit Windows executables in LabWindows/CVI for Windows 95 and NT.
In LabWindows/CVI for Windows 3.1, standalone programs are run using a special executable
file that contains the LabWindows/CVI run-time libraries. If you run more than one program at a
time, extra copies of this special executable are loaded into memory. Under Windows 95 and
NT, the LabWindows/CVI run-time libraries come in DLL form. The same DLLs are used by
standalone executables created in LabWindows/CVI and executables created in external
compilers. If more than one program is run at a time, only one copy of the DLL is loaded.

To create a standalone executable, you must first select Standalone Executable from the
submenu attached to the Target command in the Build menu of the Project window. When
Standalone Executable is checkmarked, the Create Standalone Executable command appears
below the Target command in the Build menu. The Create Standalone Executable command
in Windows 95 and NT is the same as in Windows 3.1, except that you can specify version
information to be included in the executable in the form of a standard Windows version
resource.

Creating DLLs in LabWindows/CVI
In LabWindows/CVI for Windows 95 and NT, you can create 32-bit DLLs. Along with each
DLL, LabWindows/CVI creates a DLL import library for your compatible compiler. You can
choose to create DLL import libraries compatible with all four compatible external compilers.

Updates to the Programmer Reference Manual Chapter 1

LabWindows/CVI 4.0 Addendum 1-20 © National Instruments Corporation

You need a separate project for each DLL you want to create. You must select Dynamic Link
Library from the submenu attached to the Target command in the Build menu of the Project
window. When Dynamic Link Library is checkmarked, the Create Dynamic Link Library
command appears below the Target command in the Build menu. Refer to Chapter 2, Updates
to the User Manual, of this document for detailed information on the Create Dynamic Link
Library command.

There is no provision for debugging DLLs created in LabWindows/CVI.

Customizing an Import Library

If you need to perform some special processing in your DLL import library, you can customize
it. Instead of generating a .lib file, you can generate a .c file containing source code. If you
do this, however, you can export only functions from the DLL, not variables.

To customize an import library, you must have an include file that contains the declarations of
all of the functions you want to access from the DLL. Load the include file into a Source
window, and execute the Generate DLL Import Source command in the Options menu.

After you have generated the glue source, you can modify it, including making calls to functions
in other source files. Create a new project containing the glue source file and any other files it
references. Select Static Library from the submenu attached to the Target command in the
Build menu of the Project window. Execute the Create Static Library command.

Note: This glue source code does not operate in the same way as a normal DLL import
library. When you link a normal DLL import library into an executable, the operating
system attempts to load the DLL as soon as the program starts. The glue source
generated by LabWindows/CVI is written so that the DLL is not loaded until the first
function call into it is made.

Preparing Source Code for Use in a DLL

When you create a DLL, you must address the following issues because they can affect your
source code and include file.

• The calling convention you use for the exported functions.

• How you specify which DLL functions and variables are to be exported.

• Marking symbols that are imported in the DLL include file you distribute.

This section discusses how you can address these issues when you create your DLL in
LabWindows/CVI. If you create your DLL in an external compiler, the approach is very similar.
The external compilers, however, do not agree in all aspects. These differences are also
discussed in this chapter.

Chapter 1 Updates to the Programmer Reference Manual

© National Instruments Corporation 1-21 LabWindows/CVI 4.0 Addendum

Some of the information in this section is very technical and complex. At the end of the section,
there are recommendations on the best approaches to these issues. These recommendations are
intended to make creating the DLL as simple as possible, and to make it easy to use the same
source code in LabWindows/CVI and the external compilers.

Calling Convention for Exported Functions

If you intend for your DLL to be used solely by C or C++ programs, you can use the cdecl (or
WATCOM stack-based) calling convention for your exported functions. If, however, you want
your DLL to be callable from environments such as Microsoft Visual Basic, you must declare
your exported functions with the _stdcall calling convention.

You should do this by explicitly defining the functions with the _stdcall keyword. This is
true whether or not you choose to make _stdcall the default calling convention for your
project. You must use the _stdcall keyword in the declarations in the include file you
distribute with the DLL.

The __stdcall keyword in not recognized on other platforms, such as Unix or Windows 3.1.
If you are working with source code that might be used on other platforms, you should use a
macro in place of __stdcall . The DLLSTDCALL macro is defined in the cvidef.h include
file for this purpose.

The following are examples of using the DLLSTDCALL macro.

int DLLSTDCALL MyIntFunc (void);
char * DLLSTDCALL MyStringFunc (void);

Note: The stdcall calling convention cannot be used on functions with a variable number
of arguments. Consequently, such functions cannot be used in Microsoft Visual Basic.

Exporting DLL Functions and Variables

When a program uses a DLL, it can access only the functions or variables that are exported by
the DLL. Only globally declared functions and variables can be exported. Functions and
variables declared as static cannot be exported.

If you create your DLL in LabWindows/CVI, there are two ways to indicate which functions and
variables to export: the include file method, and the qualifier method.

Include File Method

You can identify symbols to export via include files that contain the declarations of the symbols
you want to export. The include files may contain nested #include statements, but the
declarations in the nested include files are not exported. In the Create Dynamic Link Library
dialog box, you select from a list of all of the include files in the project.

Updates to the Programmer Reference Manual Chapter 1

LabWindows/CVI 4.0 Addendum 1-22 © National Instruments Corporation

The include file method does not work with other compilers. However, it is similar to the .def
method used by the other compilers.

Export Qualifier Method

You can mark each function and variable you want to export with the an export qualifier.
Currently, not all compilers recognize the same export qualifier names. The most commonly
used is __declspec(dllexport) . Some also recognize __export . LabWindows/CVI
recognizes both. It is recommended that you use the macro DLLEXPORT macro which is defined
in the cvidef.h include file. The following are examples of using the DLLEXPORT macro.

int DLLEXPORT DLLSTDCALL MyFunc (int parm) {}
int DLLEXPORT myVar = 0;

If the type of your variable or function requires an asterisk (*) in the syntax, put the qualifier
after the asterisk, as in the following.

char * DLLEXPORT myVar = NULL;

Note: Borland C/C++ version 4.5x, requires that you place the qualifier before the asterisk.
In Borland C/C++ 5.0, you can place the qualifier on either side of the asterisk.

When LabWindows/CVI creates a DLL, it exports all symbols for which export qualifiers appear
in either the definition or the declaration. If you use an export qualifier on the definition and an
import qualifier on the declaration, LabWindows/CVI exports the symbol. The external
compilers differ widely in their behavior on this point. Some require that the declaration and
definition agree.

Note: If you have included in your DLL project an object or library file defining exported
symbols, LabWindows/CVI cannot correctly create import libraries for each of the
compilers it works with. This problem does not arise if you are using only source code
files in your DLL project.

Marking Imported Symbols in Include File Distributed with DLL

Generally, you should distribute an include file with your DLL. The include file should declare
all of the exported symbols. If any of these symbols are variables, you must mark them with an
import qualifier. Import qualifiers are required on variable declarations so that the correct code
can be generated for accessing the variables.

Import qualifiers can also be used on function declarations, but they are not required. When you
use an import qualifier on a function declaration, external compilers can generate slightly more
efficient code for calling the function.

Using import qualifiers in the include file you distribute with your DLL can cause problems if
you use the same include file in the DLL source code.

Chapter 1 Updates to the Programmer Reference Manual

© National Instruments Corporation 1-23 LabWindows/CVI 4.0 Addendum

• If you mark variable declarations in the include file with import qualifiers and you use the
include file in a source file other than the one in which the variable is defined,
LabWindows/CVI (and any other external compiler) treats the variable as if it were imported
from another DLL and generates incorrect code as a result.

• If you use export qualifiers in the definition of symbols and the include file contains import
qualifiers on the same symbols, some external compilers report an error.

You can solve these problems in several different ways.

• You can avoid exporting variables from DLLs, and thereby eliminate the need to use import
qualifiers. For each variable you want to export, you can create functions to get and set its
value or a function to return a pointer to the variable. You do not need to use import
qualifiers for functions. This is the simplest approach. (Unfortunately, it does not work if
you use an export qualifier in a function definition and you are creating the DLL with an
external compiler that requires the declaration and definition to agree.)

• You can create a separate include file for distribution with the DLL.

• You can use a special macro that resolves to either an import or export qualifier depending
on a conditional compilation flag. In LabWindows/CVI you can set the flag in your DLL
project by using the Compiler Defines command in the Options menu of the Project
window.

Recommendations

To make creating a DLL as simple as possible, adhere to the following recommendations.

• Use the __stdcall keyword (or DLLSTDCALL or a similar macro) in the declaration and
definition of all exported functions. Do not export functions with a variable number of
arguments.

• Identify the exported symbols using the include file method. Do not use export qualifiers. If
you are using an external compiler, use the .def file method.

• Do not export variables from the DLL. For each variable you want to export, you can create
functions to get and set its value or a function to return a pointer to the variable. Do not use
import qualifiers in the include file.

If you follow these recommendations, you reap the following benefits.

• You can distribute with your DLL the same include file that you include in the source files
used to make the DLL. This is especially useful when creating DLLs from instrument
drivers.

• You can use the same source code to create the DLL in LabWindows/CVI and any of the
compatible external compilers.

• You can use your DLL in Microsoft Visual Basic or other non-C environments.

Updates to the Programmer Reference Manual Chapter 1

LabWindows/CVI 4.0 Addendum 1-24 © National Instruments Corporation

Automatic Inclusion of Type Library Resource for Visual
Basic

The Create Dynamic Link Library command gives you the option to automatically create a
Type Library resource and include it in the DLL. When you use this option, Visual Basic users
can call the DLL without having to use a header file containing Declare statements for the
DLL functions. The command requires that you have a function panel file for your DLL.

If your function panel file contains help text, you can generate a Windows help file from it using
the Generate Windows Help command in the Options menu of the Function Tree Editor . The
Create Dynamic Link Library command optionally includes pointers into the Window help
file in the Type Library. These pointers let Visual Basic users access the help information from
the Type Library Browser.

Visual Basic has a more restricted set of types than C. Also, the Create Dynamic Link Library
command imposes certain requirements on the declaration of the DLL API. Use the following
guidelines to ensure that you DLL API can be used in Visual Basic:

• Always use typedefs for structure parameters and union parameters.

• Do not use enum parameters.

• Do not use structures that require forward references or that contain pointers.

• Do not use pointer types except for reference parameters.

Creating Static Libraries in
LabWindows/CVI
You can create static library (.lib) files in LabWindows/CVI for Windows 95 and NT. Static
libraries are libraries in the traditional sense - a collection of object files - as opposed to a
dynamic link library or an import library. You can use just one project to create static library
files to work with all four compatible external compilers, but only if you include no object or
library files in the project.

You need a separate project for each static library you want to create. You must select Static
Library from the submenu attached to the Target command in the Build menu of the Project
window. When Static Library is checkmarked, the Create Static Library command appears
below the Target command in the Build menu. Refer to Chapter 2 in this document for detailed
information on the Create Static Library command.

Note: If you include a .lib file in a static library project, all object modules from the .lib
are included in the static library. When an executable or DLL is created, only the
modules needed from the .lib file are used.

Chapter 1 Updates to the Programmer Reference Manual

© National Instruments Corporation 1-25 LabWindows/CVI 4.0 Addendum

Creating Object Files in LabWindows/CVI
You can create an object file in LabWindows/CVI by opening a source (.c) file and executing
the Create Object File command in the Options menu of the Source window.

In LabWindows/CVI for Windows 95 and NT, you can choose to create only an object file for
the currently selected compiler or to create object files for all four compatible external
compilers.

Calling Windows SDK Functions in
LabWindows/CVI
You can call Windows SDK Functions in LabWindows/CVI for Windows 95 and NT.

Help for the SDK functions can be obtained by selecting the Windows SDK command in the
Help menu of any LabWindows/CVI window.

Windows SDK Include Files

You must include the SDK include files before the LabWindows/CVI include files. There are
function name and typedef conflicts between the Windows SDK and the LabWindows/CVI
libraries. The LabWindows/CVI include files contain special macros and conditional
compilation to adjust for declarations in the SDK include files. Thus, the C preprocessor must
process the SDK include files before the LabWindows/CVI include files.

When you are compiling in LabWindows/CVI or when you are using an external compiler to
compile your source files for linking in LabWindows/CVI, use LabWindows/CVI’s SDK
include files. LabWindows/CVI’s SDK include files are in the cvi\sdk\include directory.
The cvi\sdk\include directory is automatically searched by the LabWindows/CVI
compiler. You do not need to add it to your include paths.

When you use an external compiler to compile and link your source files, you should use the
SDK include files that come with the external compiler. If you use an external compiler to
compile your source files for linking in LabWindows/CVI, use LabWindows/CVI’s SDK
include files. For more information, see the Setting Up Include Paths for LabWindows/CVI,
ANSI C, and SDK Libraries section later in this chapter.

There are a very large number of SDK include files. In general, you need to explicitly include
only windows.h . It, in turn, includes many, but not all, of the other include files. Including all
of windows.h and its subsidiary include files causes a significant increase in compilation time
and memory usage. WIN32_LEAN_AND_MEAN is a macro from Microsoft which, when
defined, eliminates the less commonly used portions of windows.h and its subsidiary include

Updates to the Programmer Reference Manual Chapter 1

LabWindows/CVI 4.0 Addendum 1-26 © National Instruments Corporation

files. By default, LabWindows/CVI adds /DWIN32_LEAN_AND_MEAN as a compile-time
definition when you create a new project. You can modify this behavior by using the Compiler
Defines command in the Options menu of the Project window.

Using Windows SDK Functions for User Interface
Capabilities

The LabWindows/CVI User Interface Library is built on top of the Windows SDK. It is not
designed to be used in user programs that attempt to build other user interface objects at the
SDK level. While there are no specific restrictions on using SDK functions in
LabWindows/CVI, it is recommended that you either use the User Interface Library for your
entire user interface, or not use it at all.

Using Windows SDK Functions to Create Multiple Threads

Although you can use the Windows SDK Functions to create multiple threads in a
LabWindows/CVI program, the LabWindows/CVI development environment is not set up to
handle multiple threads. For instance, if your main program terminates without destroying the
threads, they are not terminated. Also, the LabWindows/CVI libraries are not multithreaded safe
when called from a program linked in LabWindows/CVI.

(Some of the libraries are multithreaded safe in programs linked with an external compiler. See
the Creating Executables and DLLs in External Compilers for Use with the LabWindows/CVI
Libraries earlier in this chapter.)

Automatic Loading of SDK Import Libraries

All of the SDK functions are implemented in DLLs. Each external compiler comes with a
number of DLL import libraries for the SDK functions. Most of the commonly used SDK
functions programs are in the following three import libraries.

kernel32.lib
gdi32.lib
user32.lib

LabWindows/CVI for Windows 95 and NT automatically loads these three libraries at start up
and searches them to resolve references at link time. Thus, you do not need to include these
libraries in your project.

If the LabWindows/CVI linker reports SDK functions as unresolved references, you need to add
import libraries to your project. Refer to the cvi\sdk\sdkfuncs.txt file for associations
of SDK import libraries to SDK functions. The import libraries are in the cvi\sdk\lib
directory.

Chapter 1 Updates to the Programmer Reference Manual

© National Instruments Corporation 1-27 LabWindows/CVI 4.0 Addendum

Setting Up Include Paths for
LabWindows/CVI, ANSI C, and SDK
Libraries
The rules for using SDK include files are not the same as the rules for using ANSI C standard
library include files, which in turn are different than the rules for using the LabWindows/CVI
library include files. (See the Include Files for the ANSI C Library and the LabWindows/CVI
Libraries and Windows SDK Include Files sections earlier in this chapter.) Depending on where
you are compiling and linking, you may have to set up your include paths very carefully. Each
of the cases is discussed here.

Compiling in LabWindows/CVI for Linking in
LabWindows/CVI

Use the SDK and ANSI C include files that come with LabWindows/CVI. This is done
automatically. You do not need to set up any special include paths.

Compiling in LabWindows/CVI for Linking in an External
Compiler

Use LabWindows/CVI’s SDK include files and the external compiler’s ANSI C include files.
Using the Include Paths command in the Options menu of the Project window, add the
following as explicit include paths at the beginning of the project-specific list.

cvi\include
cvi\sdk\include
directory containing the external compiler’s ANSI C include paths

Compiling in an External Compiler for Linking in an
External Compiler

Use the SDK and ANSI C include files that come with the external compiler. This is done
automatically. You do need to specify the cvi\include directory as an include path for the
LabWindows/CVI library include files.

Updates to the Programmer Reference Manual Chapter 1

LabWindows/CVI 4.0 Addendum 1-28 © National Instruments Corporation

Compiling in an External Compiler for Linking in
LabWindows/CVI

Use the SDK and ANSI C include files that come with LabWindows/CVI. Specify the
cvi\include , cvi\include\ansi and cvi\sdk\include directories as include
paths in the external compiler.

Run-Time Stack Size
Under LabWindows/CVI for Windows 3.1, your run-time stack is limited to a maximum of
16,384 bytes. (See Table 1-3, Stack Size Ranges for LabWindows/CVI, in the LabWindows/CVI
Programmer Reference Manual.) Under LabWindows/CVI for Windows 95, and NT, the
maximum stack size is 1,000,000 bytes. The default size and minimum size is 100,000. You can
change the stack size using the Run Options command in the Options menu of the Project
window.

No Floating Point Coprocessor Required
No floating point coprocessor or emulator is required to run LabWindows/CVI for Windows 95
and NT or to use the DLLs containing the LabWindows/CVI libraries for Windows 95 and NT.

New Predefined Macros
The following predefined macros have been added for Windows 95 and NT.

• _CVI_EXE_ is defined if the project target type is Standalone Executable

• _CVI_DLL_ is defined if target type is Dynamic Link Library

• _CVI_LIB_ is defined if target type is Static Library

• __DEFALIGN is defined to the default structure alignment (8 for Microsoft and Symantec,
1 for Borland and WATCOM)

• _NI_VC_ is defined to 220 if in Microsoft Visual C/C++ compatibility mode

• _NI_SC_ is defined to 720 if in Symantec C/C++ compatibility mode

• _NI_BC_ is defined to 451 if in Borland C/C++ mode

• _NI_WC_ is defined to 1050 if in WATCOM C/C++ mode

• _WINDOWS is defined

Chapter 1 Updates to the Programmer Reference Manual

© National Instruments Corporation 1-29 LabWindows/CVI 4.0 Addendum

• WIN32 is defined

• _WIN32 is defined

• __WIN32__ is defined

• __NT__ defined

• _M_IX86 is defined to 400

• _NI_mswin32_ is defined

Updates to the Programmer Reference Manual Chapter 1

LabWindows/CVI 4.0 Addendum 1-30 © National Instruments Corporation

General Compiler/Linker Enhancements
The compiler/linker enhancements made specifically for Windows 95 and NT are discussed
earlier in this chapter. This section discusses other changes made to the LabWindows/CVI
compiler and linker. Unless otherwise marked, these changes apply to LabWindows/CVI on all
platforms.

Maximum Nesting of Include Files
The maximum nesting of #include statements has been increased from 8 to 32. (For other
limits, see Table 1-1, LabWindows/CVI Compiler Limits, in the LabWindows/CVI Programmer
Reference Manual.)

C Language Extensions
Several extensions to, or relaxations of, the C language have been made. The purpose is to make
the LabWindows/CVI compiler compatible with the commonly used C extensions in external
compilers on Windows 95 and NT.

Calling Conventions (Windows 95/NT Only)

You may use the following calling convention qualifiers in function declarations:

cdecl
_cdecl
__cdecl (recommended)
_stdcall
__stdcall (recommended)

In Microsoft Visual C/C++, Borland C/C++, and Symantec C/C++, if you do not use a calling
convention qualifier, the calling convention normally defaults to cdecl . You can, however, set
options to cause the calling convention to default to stdcall . The behavior is the same in
LabWindows/CVI. You can set the default calling convention to either cdecl or stdcall
using the Compiler Options command in the Options menu of the Project window. When you
create a new project, the default calling convention is cdecl .

In WATCOM C/C++, the default calling convention is neither cdecl nor stdcall . When
you compile a module in WATCOM for use in LabWindows/CVI, you must use the -4s (80486
Stack-Based Calling) option. (See the Creating Object and Library Files in External Compilers
for Use in LabWindows/CVI section in this chapter.) The -4s option causes the stack-based

Chapter 1 Updates to the Programmer Reference Manual

© National Instruments Corporation 1-31 LabWindows/CVI 4.0 Addendum

calling convention to be the default. In LabWindows/CVI in WATCOM compatibility mode, the
default calling convention is always the stack-based convention. It cannot be changed.
LabWindows/CVI does compile with the cdecl and stdcall conventions under WATCOM,
except that floating point and structure return values do not work in the cdecl calling
convention. It is recommended that you avoid using cdecl with WATCOM.

In the cdecl calling convention (and the WATCOM stack-based calling convention), the
calling function is responsible for cleaning up the stack, and functions can have variable number
of arguments.

In the stdcall calling convention, the called function is responsible for cleaning up the stack.
Functions with a variable number of arguments do not work in stdcall . If you use the
stdcall qualifier on a function with a variable number of arguments, the qualifier is not
honored. All compilers pass parameters and return values in the same way for stdcall
functions, except for floating point and structure return values.

The stdcall calling convention is recommended for all functions exported from a DLL.
Visual Basic and other non-C Windows programs expect DLL functions to be stdcall .

Import and Export Qualifiers

You may use the following qualifiers in variable and function declarations.

__declspec(dllimport)
__declspec(dllexport)
__import
__export
_import
_export

At this time, not all of these qualifiers work in all external compilers. The LabWindows/CVI
cvidef.h include file defines the following two macros, which are guaranteed to work in each
external compiler.

DLLIMPORT
DLLEXPORT

An import qualifier informs the compiler that the symbol is not defined in the project but rather
in a DLL that is linked into the project. Import qualifiers are required on declarations of
variables imported from a DLL, but are not required on function declarations.

An export qualifier is relevant only in a project for which the target type is Dynamic Link
Library. The qualifier can be on the declaration or definition or symbol, or both. The symbol
must be defined in the project. The qualifier instructs the linker to include the symbol in the
DLL import library.

Updates to the Programmer Reference Manual Chapter 1

LabWindows/CVI 4.0 Addendum 1-32 © National Instruments Corporation

C++-Style Comment Markers

You can use double slashes (//) to begin a comment. The comment continues until the end of the
line.

Duplicate Typedefs

The LabWindows/CVI compiler no longer reports an error on multiple definitions of the same
typedef identifier, as long as the definitions are identical.

Structure Packing Pragma (Windows 3.1 and Windows
95/NT only)

The pack pragma now works in LabWindows/CVI. You can use it to specify the maximum
alignment factor for elements within a structure. For example, assume the following structure
definition,

struct t {
double d1;
char charVal;
short shortVal;
double d2;

 };

If the maximum alignment is 1, the structure can start on any 1-byte boundary, and there are no
gaps between the structure elements.

If the maximum alignment is 8, then this structure must start on an 8-byte boundary, shortVal
starts on a 2-byte boundary, and d2 starts on an 8-byte boundary.

You can set the maximum alignment as follows:

#pragma pack(4) /* sets maximum alignment to 4 bytes */
#pragma pack(8) /* sets maximum alignment to 8-bytes */
#pragma pack() /* resets to the default */

The maximum alignment applied to a structure is based on the last pack pragma statement
seen before the definition of the structure.

Chapter 1 Updates to the Programmer Reference Manual

© National Instruments Corporation 1-33 LabWindows/CVI 4.0 Addendum

Program Entry Points (Windows 95 and NT only)

In Windows 95 and NT, you can use WinMain instead of main as the entry point function to
your program. You might want to do this if you plan to link your executable using an external
compiler. You need to include windows.h for the data types normally used in the WinMain
parameter list. The following is the prototype for WinMain with the Windows data types
reduced to intrinsic C types.

int __ stdcall WinMain (void * hInstance, void * hPrevInstance, char * lpszCmdLine
int nCmdShow)

Include Paths
Several changes have been made in how LabWindows/CVI searches for include files.

Non-Project-Specific User-Defined Include Paths

In previous versions of LabWindows/CVI, the include paths you specified using the Include
Paths command in the Options menu of the Project window were always kept in the project
file. If you shared a project file with other users, the include paths were carried along with it,
even though the directories on the other machines may have been structured very differently.

Now you can specify include paths to be kept for your machine only, without regard to the
project file. The Include Paths dialog box has two lists, one for include paths specific to the
project, and one not specific to the project.

VXI Plug & Play Include Directory

When you install VXI Plug & Play instrument drivers, the include files for the drivers are placed
in a specific VXI Plug & Play include directory. LabWindows/CVI now searches that directory
for include files.

Complete Search Precedence

The following is the complete include file search precedence used by LabWindows/CVI.

• Project list

• Project-specific user-defined include paths

Updates to the Programmer Reference Manual Chapter 1

LabWindows/CVI 4.0 Addendum 1-34 © National Instruments Corporation

• Non-project-specific user-defined include paths

• The paths listed in the Instrument Directories dialog box

• The cvi\include directory

• The cvi\include\ansi directory

• The VXIplug&play include directory

• The cvi\instr directory

• The cvi\include\sdk directory (Windows 95/NT only)

Searching for Instrument Driver DLLs
(Windows 3.1 Only)
This section describes a documentation correction and an enhancement made regarding how
instrument drivers DLLs are found in LabWindows/CVI for Windows 3.1.

Correction to Documentation

There is an error in the DLL Search Precedence section of Chapter 2, Using Loadable Compiled
Modules, in the LabWindows/CVI Programmer Reference Manual. It states that if a DLL is
associated with an .fp file, LabWindows/CVI looks in the project for a .pth or .dll file
with the same base name as the .fp file. In fact, it looks in the project only for a .pth or .dll
file with the same full path name as the .fp file, except for the extension.

Searching for DLLs Associated with .fp Files

Starting in LabWindows/CVI version 4.0 for Windows 3.1, if there is not a .pth or .dll file
in the same directory as the .fp file, LabWindows/CVI looks for a DLL with the same base
name as the .fp file using the standard Windows search algorithm. Thus, if a DLL with the
same base name is in the windows or windows/system directory or a directory listed in
your PATH environment variable, LabWindows/CVI finds it.

This makes it easier to use VXI Plug & Play instrument driver DLLs in LabWindows/CVI for
Windows 3.1. DLLs for VXI Plug & Play drivers are not in the same directory as the .fp files,
but the directory containing the DLL is listed in the PATH environment variable.

Note: In Windows 95 and NT, LabWindows/CVI never directly searches for DLLs associated
with .fp files. Each DLL must have a DLL import library (.lib) file. The DLL
import library specifies the name of the DLL, which is then searched for using the
standard Windows DLL search algorithm. If the .fp file is under the VXIplug&play
directory tree, LabWindows/CVI looks for a .lib file in the VXIplug&play import

Chapter 1 Updates to the Programmer Reference Manual

© National Instruments Corporation 1-35 LabWindows/CVI 4.0 Addendum

library subdirectory. LabWindows/CVI looks for the VXIplug&play import library
before it looks for a program file in the directory of the .fp file, unless a program file
in the directory of the .fp file (and with the same base name as the .fp file) is listed
in the project and is unexcluded.

Run State Change Callbacks - Clarification
When you use a compiled module in LabWindows/CVI, you can arrange for it to be notified of a
change in the execution status (start, stop, suspend, resume). This is done through a callback
function, which is always named __RunStateChangeCallback. This is described in detail
in the section Special Considerations When Using a Loadable Compiled Module, in Chapter 2,
Using Loadable Compiled Modules, of the LabWindows/CVI Programmer Reference Manual.

The description implies that a Suspend notification is always followed by a Resume
notification. In actuality, however, a Stop notification can follow a Suspend notification
without an intervening Resume notification.

Note: Run State Change Callbacks do not work in programs linked in external compilers.

Updates to the Programmer Reference Manual Chapter 1

LabWindows/CVI 4.0 Addendum 1-36 © National Instruments Corporation

Distributing Executables, DLLs, and
Libraries in Windows 95
This chapter discusses distributing standalone executables and DLLs in Windows 95 and NT.
Chapter 4, Creating and Distributing Standalone Executables, of the LabWindows/CVI
Programmer Reference Manual, describes this process for Windows 3.1. The process for
Windows 95 and NT is very similar. This chapter follows the organization of Chapter 4 of the
LabWindows/CVI Programmer Reference Manual, noting the differences and changes for
Windows 95 and NT.

One section discusses using hardware interrupts in Windows 95 and NT. Also, new compiler,
linker, and run-time error messages are presented. Changes to Chapter 5, Distributing Libraries,
in the Programmers Reference Manual, are also described.

The Run-Time Library DLLs
For Windows 3.1, executables that you distribute must be accompanied by the
LabWindows/CVI run-time engine, which is an executable file. The run-time engine is
distributed with LabWindows/CVI on a separate diskette and is installed as part of the
LabWindow/CVI installation. The Create Distribution Kit command in the Build menu of the
Project window optionally bundles the run-time engine into your distribution kit. Alternatively,
you can make copies of this diskette for separate distribution.

For Windows 95 and NT, the run-time libraries are in a set of DLLs rather than in an executable
file. As in Windows 3.1, these DLLs are distributed on a separate diskette and are installed as
part of LabWindows/CVI. The Create Distribution Kit command in the Build menu of the
Project window optionally bundles the run-time library DLLs into your distribution kit.
Alternatively, you can make copies of this diskette for separate distribution.

The run-time library DLLs are the following.

cvirt.dll
cvirte.dll

The LabWindows/CVI run-time library DLLs do not include the DLLs for National Instruments
hardware. End-users can install the DLLs for their hardware from the distribution disks that
National Instruments supplies to those users.

Chapter 1 Updates to the Programmer Reference Manual

© National Instruments Corporation 1-37 LabWindows/CVI 4.0 Addendum

Distributing DLLs You Create

In Windows 95 and NT, you can distribute DLLs that use the LabWindows/CVI run-time
libraries. As in the case of standalone executables, they must be distributed along with the
LabWindows/CVI run-time library DLLs.

Minimum System Requirements
To use a standalone executable or DLL that depends on the LabWindows/CVI run-time libraries,
you must have the following:

• Windows 95, or Windows NT version 3.51 or later

• A personal computer using at least a 33 MHz 80486 or higher microprocessor

• A VGA resolution (or higher) video adapter

• A minimum of 8 MB of memory

• Free hard disk space equal to 4 MB, plus the size of your executable or DLL, plus the size of
any files it needs

No Math Coprocessor Required

Unlike the LabWindows/CVI run-time engine for Windows 3.1, you do not need a math
coprocessor or emulator to use the LabWindow/CVI run-time libraries in Windows 95 or NT.

Configuring the Run-Time Library DLLs
The options for configuring the run-time library DLLs are the same as those described in the
Configuring the Run-Time Engine section in Chapter 4, Creating and Distributing Standalone
Executables, of the LabWindows/CVI Programmer Reference Manual.

In Windows 3.1, the configuration options are stored in the win.ini file. In Windows 95 and
NT, the configuration options are stored in the Registry under the following key.

HKEY_LOCAL_MACHINE\Software\National Instruments\CVI Run-time Engine

Location of Files on the Target Machine
The Location of Files on the Target Machine for Running Executable Programs section in
Chapter 4, Creating and Distributing Standalone Executables, of the LabWindows/CVI

Updates to the Programmer Reference Manual Chapter 1

LabWindows/CVI 4.0 Addendum 1-38 © National Instruments Corporation

Programmer Reference Manual, was written for the Windows 3.1 version of LabWindows/CVI.
Although the section is generally applicable to Windows 95 and NT, different rules apply for
locating DLLs used by the executable or DLL you are distributing. (In this manual, DLLs called
by your executable or DLL are called subsidiary DLLs).

In Windows 95 or NT, subsidiary DLLs cannot be referenced directly in your project, and DLL
path (.pth) files are not supported. Your executable or DLL can link to a subsidiary DLL only
via an import library. An import library can be linked into your program in any of the following
ways.

• It can be listed in your project.

• It can be the program file associated with the .fp file for an instrument driver or user
library.

• It can be dynamically loaded via a call to LoadExternalModule .

Rules for Using Statically Linked DLL Files

If a DLL import library is listed in the project or is associated with an instrument driver or user
library, the import library is statically linked into your executable or DLL. The import library
contains the name of the subsidiary DLL. When your executable or DLL is loaded, the
subsidiary DLL is found using the standard Windows DLL search algorithm, which is described
in the Windows SDK documentation for the LoadLibrary function. The search precedence is:

• The directory from which the application was loaded

• The current working directory

• On Windows 95, the Windows system directory. On Windows NT, the Windows
system32 and system directories

• The Windows directory

• The directories listed in the PATH environment variable

Rules for Loading Files Using LoadExternalModule

Under Windows 95 and NT, the rules for loading files using LoadExternalModule are the
same as for Windows 3.1, with the following exceptions.

• DLL path (.pth) files do not work.

• DLL files cannot be directly referenced in calls to LoadExternalModule . The DLL
import library must be referenced instead. The DLL import library contains the name of the
DLL file. When LoadExternalModule is called from either an executable or a DLL, the
DLL file specified in the import library is found using the standard Windows DLL search

Chapter 1 Updates to the Programmer Reference Manual

© National Instruments Corporation 1-39 LabWindows/CVI 4.0 Addendum

algorithm, which is described in the Windows SDK documentation for the LoadLibrary
function. The search precedence is:
– The directory from which the application was loaded
– The current working directory
– On Windows 95, the Windows system directory. On Windows NT, the Windows

system32 and system directories
– The Windows directory
– The directories listed in the PATH environment variable

Distributing Libraries in Windows 95
and NT
In general, the information in Chapter 5, Distributing Libraries, in the Programmers Reference
Manual, applies to Windows 95 and NT. There is one exception. The Adding Libraries to User’s
Library Menu section describes how you can insert your libraries into the user’s library menu by
using the modini program to modify the user’s cvi.ini file. In Windows 95 and NT, there is
no cvi.ini file. Instead, the configuration information for the LabWindows/CVI development
environment is kept in the Windows registry. You can use the new program, modreg , to modify
any information in the registry. Documentation for the program can be found in the file
modreg.doc . Both modreg.exe and modreg.doc are in the cvi\bin directory.

The modreg commands to add files to the user’s library menu are same as the modini
commands shown in the manual. However, you must add the following to the beginning of the
modreg command file.

setkey [HKEY_CURRENT_USER\Software\National Instruments]
appendkey CVI\@latestVersion

Updates to the Programmer Reference Manual Chapter 1

LabWindows/CVI 4.0 Addendum 1-40 © National Instruments Corporation

Handling Hardware Interrupts under
Windows 95 and NT
In Windows 3.1, you can handle hardware interrupts in a DLL. In Windows 95, you must handle
hardware interrupts in a VxD. In Windows NT, you must handle hardware interrupts in a kernel
mode driver. VxDs and kernel mode drivers cannot be created in LabWindows/CVI. Instead,
they must be created in Microsoft Visual C/C++, and you must have the Microsoft Device
Driver Developer Kit (DDK).

In Windows 3.1, it is extremely difficult for you to call into main application source code at
interrupt time. Windows 95 and NT make this easier. You can arrange for a function in your
LabWindows/CVI source code to be called after your VxD (or kernel mode driver) interrupt
service routine exits. You do this by creating a thread for your interrupt callback function. The
callback function executes a loop which blocks its thread until it is signaled by the interrupt
service routine. Each time the interrupt service routine executes, it unblocks the callback thread.
The callback thread then performs its processing and blocks again.

LabWindows/CVI includes source code template files for a VxD and a kernel mode driver. It
also includes a sample main program to show you how to read and write registers on a board.
We have one set of files for Windows 95 and another for Windows NT.

The files are located in cvi\vxd\win95 and cvi\vxi\winnt . Some basic information is
contained in the file template.doc in each directory.

Chapter 1 Updates to the Programmer Reference Manual

© National Instruments Corporation 1-41 LabWindows/CVI 4.0 Addendum

New Compiler/Linker/Run-Time Errors
and Warnings
This chapter contains the error and warnings messages that should be added to Appendix A,
Errors and Warnings, in the LabWindows/CVI Programmers Reference Manual. These messages
are displayed on errors or warning that occur when compiling, linking, or running programs.

Table 1-1. Error Messages for Appendix A, Programmer Reference Manual

Error Message Type Error Comment

Bad BSS section encountered
while reading external module:
FILE.

Object Load
Error

The object module is corrupted or is of
a type that cannot be loaded into
LabWindows/CVI.

Bad COFF Library header. Object Load
Error

The library file you are loading is
either corrupted or not in the COFF
format.

Bad COFF Library member
header.

Object Load
Error

The COFF library you are loading
contains a module that is corrupted or
in an invalid format.

Cannot link variable '%s' to
import library without '%s'
keyword in declaration.

Link Error A variable that you have declared as
extern is defined in a DLL import
library, but you did include the
__import or
declspec(dllimport) qualifier
in the declaration.

COFF Name too long. Object Load
Error

The COFF object or library you are
loading contains a symbol name that is
longer than the maximum legal length.

Could not allocate stack
space. Try decreasing the
Maximum stack size option in
the Run Options dialog.

Fatal
Runtime
Error

There is insufficient memory to
allocate the Maximum Stack Size you
have specified. LabWindows/CVI
allocates the maximum size on the
stack at the beginning of execution.

continues

Updates to the Programmer Reference Manual Chapter 1

LabWindows/CVI 4.0 Addendum 1-42 © National Instruments Corporation

Table 1-1. Error Messages for Appendix A, Programmer Reference Manual (Continued)

Error Message Type Error Comment

Elf library is out of date. Object Load
Error

CVI expects a more recent version of
the shared library (libelf.so) that it
uses to load ELF objects. As a result,
LabWindows/CVI is unable to read or
write object and library files.

Error in Elf Library
encountered while reading
external module: NAME.

Object Load
Error

The object module is corrupted or is of
a type that cannot be loaded by
LabWindows/CVI.

Error: compiling ‘%s’ for DLL
exports.

DLL Import
Library
Creation
Error.

When creating a DLL using the Include
File method for specifying exported
symbols, an error was encountered
compiling the include file.

Error: Incompatible type for
function or variable "%s" in
header "%s" used to specify
exports.

DLL Link
Error

When creating a DLL using the Include
File method for specifying exported
symbols, the type of the symbol in the
include file does not match the type in
the source file.

Expecting integer constant,
push or pop.

Compile
Error

The pack pragma requires at least one
parameter.

Illegal type for symbol
'DllMain': TYPE.

Compile
Error

The function DLLMain does not
conform to the accepted prototype.

Illegal type for symbol
'WinMain': TYPE.

Compile
Error

The function WinMain does not
conform to the accepted prototype.

Import Variables cannot be
used in global variable
initialization.

Compile
Error

A global variable marked as
__import or
declspec(dllimport) is being
used in an initializer of another
variable.

Insufficient system memory for
Interactive Window

Link Error There is not enough memory to run the
interactive window.

Insufficient system memory for
project.

Link Error There is not enough memory to link the
project.

Insufficient user data memory
for project.

Link Error There is not enough memory to link the
project.

continues

Chapter 1 Updates to the Programmer Reference Manual

© National Instruments Corporation 1-43 LabWindows/CVI 4.0 Addendum

Table 1-1. Error Messages for Appendix A, Programmer Reference Manual (Continued)

Error Message Type Error Comment

Matching push not encountered
or already popped.

Compile
Error

A pack pragma used a named pop that
does not balance with push of the same
name.

naked functions are not
supported.

Compile
Error

LabWindows/CVI does not work with
the naked keyword.

No pack settings currently
pushed.

Compile
Error

A pack pragma used a pop when there
were no pushes.

Object module contains
unsupported FAR pointers.

Object Load
Error

The external object module contains
FAR pointers, which you cannot
implement in LabWindows/CVI.

Pack pragma valid values are
1, 2, 4, 8, and 16.

Compile
Error

The pack pragma alignment value
parameter is limited to 1, 2, 4, 8, or 16.

pragma pack(pop...) does not
set alignment. Use separate
pack pragma.

Compile
Warning

A pragma pop was used with an
alignment value. Use separate pack
pragmas for popping and setting the
alignment value.

Symbol ‘%s’ exported from
header "%s" not found in DLL.

DLL Link
Error or
Import
Library
Creation
Error.

When creating a DLL using the Include
File method for specifying exported
symbols, one of the symbols declared
in the include file was not found in the
DLL project. Or, when creating import
libraries from an include file and a
DLL, one of the symbols declared in
the include file was not found in the
DLL.

Syntax error; found TOKEN1
expecting TOKEN2.

Compile
Error

A syntax error occurred because
TOKEN1 was found instead of
TOKEN2.

The __cdecl calling convention
is not supported with
functions returning floats,
doubles, or structures in
WATCOM Compatibility Mode.

Compile
Error

A function with an explicit __cdecl
qualifier returns a double , float or
structure, and the selected compatible
compiler is WATCOM. Either remove
the qualifier or change the function.

continues

Updates to the Programmer Reference Manual Chapter 1

LabWindows/CVI 4.0 Addendum 1-44 © National Instruments Corporation

Table 1-1. Error Messages for Appendix A, Programmer Reference Manual (Continued)

Error Message Type Error Comment

The callback function, NAME,
differs only by a leading
underscore from another
function or variable. Change
one of the names for proper
linking.

Non-Fatal
Runtime
Error

When trying to match a callback name
specified in a .uir file to the callback
function, the compiler found two
symbols that are the same except for a
leading underscore. Resolve this
ambiguity by changing the one of the
names.

Thread data is not supported. Compile
Error

You cannot implement thread-local
storage in LabWindows/CVI.

Type error: pointer expected. Compile
Error

The expression being dereferenced
with the '* ', '-> ' or '[] ' operator does
not have pointer type.

Unnamed pop matching named
push.

Compile
Warning

A pack pragma used a unnamed pop
that balances a name push.

Warning: Import libraries
other than the one for the
current compatibility mode may
not work for symbols exported
from an object file. It is
recommended that you export
using header files instead.

DLL Link
Warning

When creating a DLL using the
Symbols Marked for Export method
for specifying exported symbols, one
of the modules was an object or library
file. LabWindows/CVI does not have
sufficient information to ensure that the
import libraries it generates for all four
compatible external compilers will
have the correct names of the symbols
in that module.

© National Instruments Corporation 2-1 LabWindows/CVI 4.0 Addendum

Chapter 2
Updates to the User Manual

Chapter Contents
Project Window Changes... 3
File Menu ... 3

Auto Save Project ... 3
Print .. 3
Most Recently Closed Files... 3

Edit Menu... 4
Use Import Libraries in Project Instead of .dll and .pth Files (Windows 95/NT Only)..... 4

Build Menu... 4
Target (Windows 95/NT Only) ... 4
External Compiler Support (Windows 95/NT only) .. 5
Create Standalone Executable ... 7
Create Dynamic Link Library (Windows 95/NT Only) ... 7
Create Static Library (Windows 95/NT Only) ... 9
Create Distribution Kit (Windows 3.1 and Windows 95/NT Only)................................ 10
Advanced Distribution Kit Options ... 12

Installation Script File Section... 12
Executable to Run After Setup... 12
Installation Titles... 13

Using Instrument Drivers.. 13
Instrument Driver Files ... 13

VXIplug&play Include Files.. 13
VXIplug&play DLLs (Windows 3.1)... 13
DLL Import Libraries for VXI Plug & Play DLLs (Windows 95 and NT)......... 14

Window Menu.. 14
Minimize All (Windows 95 only).. 14
CloseAll.. 15

Library Menu.. 15
Easy I/O for DAQ (Windows 3.1, Windows 95 and NT)... 15

Options Menu... 15
Compiler Options.. 15
Compiler Defines .. 16
Include Paths... 16
Run Options .. 16

Updates to the User Manual Chapter 2

LabWindows/CVI 4.0 Addendum 2-2 © National Instruments Corporation

Source Window Changes.. 17
Notification of External Modification (Windows 3.1 and Windows 95/NT Only)..................... 17
Backspace to Beginning of Word.. 17
Context Menus.. 17
Edit Menu... 17

Select All .. 18
View Menu... 18

Recall Panel.. 18
Find Function Panel .. 18

Run Menu... 19
Terminate Execution Shortcut Key Changed for Windows 95/NT................................. 19
Activate Panels When Resuming... 19

Options Menu... 19
Colors... 19

Syntax Coloring... 20
User Defined Tokens for Coloring... 20

Generate DLL Import Source (Windows 95/NT Only).. 20
Generate DLL Import Library (Windows 95/NT Only)... 21
Create Object File ... 22

Function Panel Changes... 23
Code Menu... 23

Select Variable.. 23
What Can be Included in the List Box ... 24
Data Type Compatibility ... 25
Sorting of List Box Entries .. 26

Chapter 2 Updates to the User Manual

© National Instruments Corporation 2-3 LabWindows/CVI 4.0 Addendum

Project Window Changes
This chapter discusses the changes to the Project window, including the menu commands
accessible from the Project window. This chapter follows the organization of Chapter 3, Project
Window, of the User Manual. The changes apply to all platforms, unless otherwise marked.

File Menu
This section discusses the changes to the File menu in the Project window.

Auto Save Project

The Auto Save Project command has replaced the Read Only command in the File menu of the
Project Window. When a project is loaded, the Auto Save Project command is initially enabled
unless the project file is read-only on disk. If the command is enabled, the LabWindows/CVI
automatically saves the project file whenever there is significant new or modified information to
save in the project. If the command is disabled, the project file is saved only in the following
cases.

• The Save, Save As, or Save All command is executed from the File menu.

• You unload the project or exit LabWindows/CVI. (You are prompted to save the file in this
case).

Notice that if the Auto Save Project command is disabled, the project file is not saved when
you start running a program, even if the Save changes before running option in the Run
Options dialog box is set to Always or Ask.

Print

A Print command has been added to the File menu in the Project window. It brings up a
selectable list of all of the files in the project that are printable. You can checkmark the files you
want to print.

Most Recently Closed Files

The File menu now contains two lists.

• a list of the four most recently closed files (other than project files)

• a list of the four most recently closed project files

Updates to the User Manual Chapter 2

LabWindows/CVI 4.0 Addendum 2-4 © National Instruments Corporation

Edit Menu
This section discusses the changes to the Edit menu in the Project window.

Use Import Libraries in Project Instead of .dll and .pth Files
(Windows 95/NT Only)

In Windows 95 and NT, each DLL must be accompanied by an import library (.lib) file. If
you want to use a DLL in your project, you must list the import library rather than the DLL.
DLL and DLL path (.pth) files cannot be added to the project.

If you load a project that was created in Windows 3.1 and that contains .dll or .pth files, a
warning message appears, and the files are excluded.

For more detailed information on using DLLs in LabWindows/CVI for Windows 95 and NT, see
the Loading DLLs in LabWindows/CVI section in Chapter 1, Updates to the Programmer
Reference Manual in this document.

Build Menu
This section discusses the changes to the Build menu in the Project window.

Target (Windows 95/NT Only)

The Target item brings up a submenu in which you select the target type for your project. The
target type determines what type of file is created when you execute the command that appears
below Target in the Build menu. The command that appears below Target in the Build menu
changes name depending on the target type selected. The target types that you can select are:

• Standalone Executable

• Dynamic Link Library

• Static Library

When anything other than Standalone Executable is selected, the Build Project command in
the Build menu and the Run Project command in the Run menu are dimmed.

Chapter 2 Updates to the User Manual

© National Instruments Corporation 2-5 LabWindows/CVI 4.0 Addendum

External Compiler Support (Windows 95/NT only)

Use the External Compiler Support command to help you build your executable or DLL in
one of the four compatible external compilers. For detailed information on this topic, see the
Creating Executables and DLLs in External Compilers for Use with the LabWindows/CVI
Libraries section in Chapter 1, Updates to the Programmer Reference Manual, in this document.

When you execute the command, the External Compiler Support dialog box appears, as shown
in the following figure.

Figure 2-1. External Compiler Support Dialog Box

• UIR Callbacks Object File—This option creates an object file for you to link into your
executable or DLL. The object file contains a list of the callback functions specified in the
User Interface Resource (.uir) files in your project. When you load a panel or menu bar
from the .uir file, the User Interface Library uses the list to link the objects in the panel or
menu bar to their callback functions in your executable or DLL. If you specify callback
function names in your .uir file(s), checkmark the checkbox, enter the name of the object
file to be created, and click on the Create button. In the future, whenever you save
modifications to any of the .uir files in the project, LabWindows/CVI automatically
updates the object file.

You must call the InitCVIRTE function at the beginning of your main , WinMain , or
DLLmain function so that LabWindows/CVI run-time libraries can initialize the list of
names from the object file. If you are creating a DLL and any of your callback functions are

Updates to the User Manual Chapter 2

LabWindows/CVI 4.0 Addendum 2-6 © National Instruments Corporation

defined in, but not exported by, the DLL, you must call LoadPanelEx or
LoadMenuBarEx (rather than LoadPanel or LoadMenuBar) from the DLL.

• Using LoadExternalModule to Load Object and Static Library Files—This option
enables the section of the dialog box that you use when creating an executable or DLL that
calls the Utility Library LoadExternalModule function to load object or static library
files.

Note: You do not need this option if you use LoadExternalModule to load only DLLs
(which are loaded via DLL import libraries).

Unlike DLLs, in which all of the external references are resolved at link time, objects and
static libraries can contain unresolved external references. When you use
LoadExternalModule to load an object or static library file, these references are
resolved using symbols in your executable or DLL, or in previously loaded external
modules. Consequently, the names of the symbols in your executable or DLL that are needed
to resolve these references must be available to the LoadExternalModule function.

• CVI Libraries —Checkmark this option if your run-time modules reference symbols in any
of the following LabWindows/CVI libraries:
– User Interface
– RS-232
– DDE
– TCP
– Formatting and I/O
– Utility

If you use one of these libraries, include in your external compiler project the object file
displayed in this option.

• ANSI C Library —Checkmark this option if your run-time modules reference symbols in
the ANSI C library. Include in your external compiler project the object file displayed in this
option.

• Other Symbols—Checkmark this option if your run-time modules reference symbols other
than those covered by the previous two options. Such symbols include functions or variables
that are defined globally in your executable or DLL and to which your object or static library
run-time modules expect to link. This option creates a file for you to link into your
executable (or DLL).
– Header File—Insert the name of an include file that contains complete declarations of

all of the symbols needed to resolve references from run-time modules.
– Object File—Enter the name of the object file that is to be created. Click on the Create

button to create the file. You must include this file in your external compiler project.

Chapter 2 Updates to the User Manual

© National Instruments Corporation 2-7 LabWindows/CVI 4.0 Addendum

Create Standalone Executable

The following new item appears in the Create Standalone Executable dialog box for Windows
95 and NT.

• Version Info—When you click on this button the Version Info dialog box appears, where
you can enter version information for the executable file. The information is saved in the
executable in the form of a standard Windows version resource. The information can be
obtained from the executable by using the Windows SDK functions
GetFileVersionInfo and GetFileVersionInfoSize .

In the Version Info dialog box, the entries for File Version and Product Version must be in the
form,

n,n,n,n

where n is a number from 0 to 255

Create Dynamic Link Library (Windows 95/NT Only)

Use the Create Dynamic Link Library command to create a dynamic link library (.dll) file
from the current project. A DLL import library (.lib) file is also created. When you select the
command, the Create Dynamic Link Library dialog box appears as shown in the following
figure.

Figure 2-2. The Create Dynamic Link Library Dialog Box

• DLL File —The name of the DLL file to be created. You can use the Browse button to select
an existing filename or enter a new one.

Updates to the User Manual Chapter 2

LabWindows/CVI 4.0 Addendum 2-8 © National Instruments Corporation

• DLL Import Library Base Name — Normally the name of the import library is the same as
the name of the DLL, except that the extension is .lib . There may be some cases, however,
where want to use a different name. For example, you may want to append “_32” to the
name of your DLL to distinguish it as a 32-bit DLL, but not append it to the import library
name. This is, in fact, the convention used for VXI Plug & Play instrument driver DLLs. If
you want to enter a different name for the import library, deselect the Use Default checkbox.
Enter a name without any directory names and without an extension.

• Prompt before overwriting file—A checkbox where you can choose to be prompted before
the program overwrites a DLL file that has the same name as the one you are creating.

• Version Info—When you click on this button the Version Info dialog box appears, where
you can enter version information for the DLL. The version information is saved in the DLL
in the form of a standard Windows version resource. The information can be obtained from
the DLL by using the Windows SDK functions GetFileVersionInfo and
GetFileVersionInfoSize .

In the Version Info dialog box, File Version and Product Version must be in the form,

n,n,n,n

where n is a number from 0 to 255

• Import Library Choices —This button lets you choose whether to create a DLL import
library for each of the compatible external compilers, or to create one only for the current
compatible compiler. (See the Compatibility with External Compilers section in Chapter 1
Updates to the Programmer Reference Manual, of this document.) If you choose to create an
import library for each compiler, the files are created in subdirectories named MSVC,
BORLAND, WATCOM, and SYMANTEC. The library for the current compatible compiler is
also created in the directory of the DLL.

• Type Library —This button lets you choose whether to add a Type Library resource to your
DLL. This feature is useful if you intend your DLL to be used from Visual Basic. For more
information, see the section Automatic Inclusion of Type Library Resource for Visual Basic
section in Chapter 1, Updates to the Programmer Reference Manual in this document.

• Using LoadExternalModule
– Add Files to DLL—This button lets you select additional module files which you want

to be linked into the DLL. These are modules which are not directly referenced by your
project files but which are referenced by modules you load at run-time by calling
LoadExternalModule .

– Help—This button describes the use of LoadExternalModule in a DLL and the
Add Files to DLL button.

• • Exports
– Export What—This indicates your current choice of method for determining which

symbols in the DLL are exported to the users of the DLL. The Change button is used to
change your choice.

Chapter 2 Updates to the User Manual

© National Instruments Corporation 2-9 LabWindows/CVI 4.0 Addendum

– Change—This button lets you select the method to use for determining which symbols
in the DLL are exported to the users of the DLL. The choices are the following.

Include File Symbols—You must name one or more include files that declare symbols
defined globally in the DLL. The declared symbols are the ones exported. You can select
from a list of include files in the project.

Symbols Marked for Export—All symbols in the DLL defined with qualifier
__declspec(dllexport) or export are exported.

• OK—This button accepts the current inputs and attempts to create the DLL.

• Cancel—This button cancels the operation and removes the dialog box.

Note: When you use the Symbols Marked for Export option and have included in your
project an object or library file defining exported symbols, LabWindows/CVI cannot
correctly create the import libraries for each of the four compatible compiler. This
problem does not arise if you are using only source code files in your DLL project.

For more information on creating DLLs, see the Preparing Source Code for Use in a DLL
section in Chapter 1, Updates to the Programmer Reference Manual in this document.

Create Static Library (Windows 95/NT Only)

Use this Create Static Library command to create a static library (.lib) file from the current
project. When you select the command, the Create Static Library dialog box appears as shown in
the following figure.

Figure 2-3. The Create Static Library Dialog Box

• Library File— The name of the library file to be created. You can use the Browse button to
select an existing filename or name a new one.

• Prompt before overwriting file—A checkbox where you can choose to be prompted before
the program overwrites a library file that has the same name as the one you are creating.

Updates to the User Manual Chapter 2

LabWindows/CVI 4.0 Addendum 2-10 © National Instruments Corporation

• Library Generation Choices—This button lets you choose whether to create a static library
for each of the compatible external compilers, or to create one only for the current
compatible compiler. (See the Compatibility with External Compilers section in Chapter 1,
Updates to the Programmer Reference Manual, of this document.) If you want to create a
static library for each compiler, you must not include any object or library files in your
project, because such files are specific to particular compiler.

• If you choose to create a static library for each compiler, the files are created in
subdirectories named MSVC, BORLAND, WATCOM, and SYMANTEC. The library for the
current compatible compiler is also created in the parent directory.

• OK—This button accepts the current inputs and attempts to create the library file.

• Cancel—This button cancels the operation and removes the dialog box.

Note: If you include a .lib file in a static library project, all object modules from the .lib
are included in the static library. When an executable or DLL is created, only the
.lib modules referenced by other modules in the project are included in the target. In
addition, LabWindows/CVI reports an error if you attempt to build a static library
when you have a DLL import library in your project.

Create Distribution Kit (Windows 3.1 and Windows 95/NT
Only)

The Create Distribution Kit command now includes an uninstall program on the distribution
disk.

Another choice has been added to the Replace Existing Files option. The Check Version option
applies to files with a Windows version resource (in other words, DLLs and executables). The
file on the distribution kit and the existing file are checked for a version resource. If each has a
version resource, the existing file is replaced if the version number of the file in the distribution
kit is newer than the version number in the existing file. If neither files have a version resource,
the existing file is replaced if its date is newer. If only one file has a version resource, it is
considered to be the newer one.

The following new options appear in the Create Distribution Kit dialog box.

• Distribute Objects and Libraries for All Compilers— This checkbox appears in
LabWindows/CVI for Windows 95 and NT to help you distribute object files, static libraries,
and DLL import libraries for all of the compatible external compilers. When selected, this
option affects all of the .obj and .lib files listed in the current file group. Four versions
of each file are included in the distribution kit. These versions are expected to be in
subdirectories under the specified location of each file. The subdirectories must be named
MSVC, BORLAND, WATCOM, and SYMANTEC. For example, if you specify the following file,

c:\myapp\distr\big.lib

Chapter 2 Updates to the User Manual

© National Instruments Corporation 2-11 LabWindows/CVI 4.0 Addendum

in a file group and the Distribute Objects and Libraries for All Compilers checkbox is
checked, then when the distribution kit is created, you must have the following files on your
disk:

c:\myapp\distr\msvc\big.lib
c:\myapp\distr\borland\big.lib
c:\myapp\distr\watcom\big.lib
c:\myapp\distr\symantec\big.lib

When installing the software, the end-user is prompted to choose one of the compatible
external compilers. Only the versions of the files for the chosen compiler are actually
installed on the end-user’s computer.

You might want to use this feature if you are distributing modules for use with the
LabWindows/CVI development environment or external compilers. If you are distributing a
turnkey application, you do not need this feature.

• Install Low-Level Support Driver —This option appears in Windows 95 and NT. It lets you
choose whether to install the LabWindows/CVI low-level support driver on the end-user’s
computer. The following Utility Library functions require the LabWindows/CVI low-level
driver to be loaded at startup.

Table 2-1. Platforms Where Utility Functions Need Low-Level Support Driver

Function
Platforms where low-level
support driver is needed

inp Windows NT

inpw Windows NT

outp Windows NT

outpw Windows NT

ReadFromPhysicalMemory Windows 95 and NT

ReadFromPhysicalMemoryEx Windows 95 and NT

WriteToPhysicalMemory Windows 95 and NT

WriteToPhysicalMemoryEx Windows 95 and NT

DisableInterrupts Windows 95

EnableInterrupts Windows 95

DisableTaskSwitching Windows 95

• Advanced—When you click on this button, the Advanced Distribution Kit Options dialog
box appears.

Updates to the User Manual Chapter 2

LabWindows/CVI 4.0 Addendum 2-12 © National Instruments Corporation

Advanced Distribution Kit Options

Clicking on the Advanced button in the Create Distribution Kit dialog box brings up the
Advanced Distribution Kit Options dialog box.

Figure 2-4. Advanced Distribution Kit Options dialog box

Installation Script File Section

• Use Custom Script—When this checkbox is selected, you can enter the name of a
customized installation script file for your distribution kit. The default installation script file
is cvi\bin\template.inf .

• Script Filename—The pathname of the customized installation script file. You can use the
Browse button to select an existing filename.

Executable to Run After Setup

• Executable Filename—The name of an executable file to run after the end-user installation
is complete. Use the Select button to select a file that has already been added to one of the
file groups.

• Command Line Arguments—The command line arguments to pass to the executable run
after the installation is complete. Use the Help button to view detailed information on special
macros you can use in this control.

Chapter 2 Updates to the User Manual

© National Instruments Corporation 2-13 LabWindows/CVI 4.0 Addendum

Installation Titles

• Program Group Name—The name of the program group created during the installation. If
the Use Default button is checked, the following priority is used to determine the program
group name.
– If the project target is an executable, the application title entered in the Create Standalone

Executable dialog box is used, if it is non-empty.
– Otherwise, the base file name of the target file (executable, DLL, or static library) is

used, if it has been created.
– Otherwise, the base file name of the project is used.

• Installation Name -- The installation window title and the text displayed in upper part of the
installation window. If the Use Default button is checked, the name is set using the same
priority as for the Program Group Name.

Using Instrument Drivers
This section discusses the changes that have been made with regard to using instrument drivers.

Instrument Driver Files

In general, all instrument driver files must be in the same directory. However, some exceptions
have been introduced.

VXIplug&play Include Files

When you install a VXIplug&play instrument driver, the include (.h) file is placed in a
different directory than the directory of the function panel (.fp) file. LabWindows/CVI can
find include files in the VXIplug&play include directory.

(For more information, see the Include Paths section in Chapter 1, Updates to the Programmer
Reference Manual in this document.)

VXIplug&play DLLs (Windows 3.1)

When you install a VXIplug&play instrument driver, its DLL is placed in a different directory
than the function panel (.fp) file. The directory containing the DLL is listed in the PATH
environment variable. If LabWindows/CVI cannot find a program file for the instrument driver
in the same directory as the .fp file, it searches for the DLL in using the standard Windows
DLL search algorithm, which includes all directories listed in the PATH environment variable.

Updates to the User Manual Chapter 2

LabWindows/CVI 4.0 Addendum 2-14 © National Instruments Corporation

(For more information, see the Searching for Instrument Driver DLLs (Windows 3.1 Only)
section in Chapter 1, Updates to the Programmer Reference Manual, in this document.)

DLL Import Libraries for VXI Plug & Play DLLs (Windows 95 and NT)

In LabWindows/CVI for Windows 95 and NT, DLLs must always be accompanied by a DLL
import library (.lib) file. The .lib file is considered to be the program file for the instrument
driver. LabWindows/CVI never looks for a DLL file directly, and cannot use DLL path (.pth)
files.

Generally, the DLL import library must be in the directory of the function panel (.fp) file.
However, when you install a VXIplug&play instrument driver DLL, its DLL import library is
placed in a different directory than the .fp file. The import libraries are placed in subdirectories
in the LIB directory under the VXIplug&play framework directory. The import libraries that
work with Visual C/C++ are placed in the MSC subdirectory. The import libraries that work with
Borland C/C++ are placed in the BC subdirectory. (Import libraries for WATCOM C/C++ or
Symantec are not distributed.)

 If the .fp file is under the VXIplug&play directory tree, LabWindows/CVI looks for a .lib
file in the VXIplug&play import library subdirectory for the current compatible compiler. (For
WATCOM C/C++, it looks for a WC subdirectory. For Symantec C/C++, it looks for an SC
directory.) LabWindows/CVI looks for the VXIplug&play import library before it looks for a
program file in the directory of the .fp file, unless a program file in the directory of the .fp
file (and with the same base name as the .fp file) is listed in the project and is unexcluded.

(For more information, see the Loading 32-bit DLLs under Windows 95 and NT section in
Chapter 1, Updates to the Programmer Reference Manual, in this document.)

Window Menu
The following commands have been added to the Window menu under the Tile Windows
command.

Minimize All (Windows 95 only)

The Minimize All command hides all of the LabWindows/CVI windows, including the Project
window and any User Interface Library panels displayed by a program you are running in
LabWindows/CVI. You can restore the windows by clicking on LabWindows/CVI in the
Windows 95 task bar.

Chapter 2 Updates to the User Manual

© National Instruments Corporation 2-15 LabWindows/CVI 4.0 Addendum

CloseAll

The Close All command closes all of the LabWindows/CVI windows, excluding the Project
window and any User Interface Library panels displayed by a program you are running in
LabWindows/CVI. It works on all platforms.

Library Menu
This section discusses the changes to the Library menu in the Project window and all other
windows in which the Library menu appears.

Easy I/O for DAQ (Windows 3.1, Windows 95 and NT)

The Easy I/O for DAQ library has been added to the Library menu.

In LabWindows/CVI version 3.1, Easy I/O for DAQ was distributed as an instrument driver. If
you included easyio.fp in a project created in LabWindows/CVI version 3.1, you should
remove it when you bring the project into LabWindows/CVI version 4.0.

For detailed descriptions of the enhancements made to the Easy I/O for DAQ library see
Chapter 4, Updates to the Standard Libraries Reference Manual, in this document.

Options Menu
This section discusses the changes to the Options menu in the Project window.

Compiler Options

For Windows 95 and NT, the compatible compiler is indicated in the Compiler Options dialog
box. (For more information on external compiler compatibility, see the Compatibility with
External Compilers section in Chapter 1, Updates to the Programmer Reference Manual, in this
document.)

For Windows 95 and NT, the default calling convention can be changed in the Compiler
Options dialog box, unless the compatible compiler is WATCOM. For the other compilers, the
default calling convention is normally cdecl but can be changed to stdcall . For WATCOM,
it is always the stack-based calling convention. (For more information, see the Calling
Conventions (Windows 95/NT Only) section in Chapter 1, Updates to the Programmer Reference
Manual, in this document.)

Updates to the User Manual Chapter 2

LabWindows/CVI 4.0 Addendum 2-16 © National Instruments Corporation

Compiler Defines

For Windows 95 and NT, the default compiler defines string now contains

/DWIN32_MEAN_AND_LEAN

This is to reduce the time and memory taken by compiling Windows SDK include files. (For
more information, see the Calling Windows SDK Functions in LabWindows/CVI section in
Chapter 1, Updates to the Programmer Reference Manual, in this document, in this document.)

For all platforms, the Compiler Defines dialog box now contains a list of the macros predefined
by LabWindows/CVI. This list includes the name and value of each predefined macro.

Include Paths

The Include Paths dialog box has been modified so that there are now two lists of paths in
which to search for include files. The top list is saved with the project file. The bottom list is
saved from one LabWindows/CVI session to another on the same machine, regardless of project.
(For more information, see the Include Paths section in Chapter 1, Updates to the Programmer
Reference Manual, in this document.)

Run Options

For Windows 95 and NT, the option Reload DLLs After Each Run has been renamed to
Unload DLLs After Each Run. Also, the option is now enabled by default. (For more
information, see the Default Unloading/Reloading Policy section in Chapter 1, Updates to the
Programmer Reference Manual, in this document.)

Chapter 2 Updates to the User Manual

© National Instruments Corporation 2-17 LabWindows/CVI 4.0 Addendum

Source Window Changes
This chapter discusses the changes to the Source window, including the menu commands
accessible from the Source window. This chapter generally follows the organization of
Chapter 3, Source, Interactive Execution, and Standard Input/Output Window, of the User
Manual. The changes apply to all platforms, unless otherwise marked.

Notification of External Modification
(Windows 3.1 and Windows 95/NT Only)
If a file in a source window has been modified externally because it was last loaded or saved by
LabWindows/CVI, then when you switch back to LabWindows/CVI from another Windows
application, a dialog box appears. You are given the option of updating the source window from
the file on disk, overwriting the file on disk with the contents of the source window, or doing
nothing.

Backspace to Beginning of Word
The Backspace to Beginning of Word command is available only from the keyboard. It
removes all text from the current position in the Source window to the beginning of the previous
word in the file. You invoke the command by pressing <Ctrl-Shift-Backspace>.

Context Menus
You can bring up a context menu in the Source window by pressing the right mouse button. The
context menu contains a selection from the most commonly used menu commands from the
Source window menu bar. The selection of commands is different depending on whether the
mouse is over the text editing area or over the line number or line icon area.

Edit Menu
The following command has been added to the Edit menu.

Updates to the User Manual Chapter 2

LabWindows/CVI 4.0 Addendum 2-18 © National Instruments Corporation

Select All

The Select All command selects all of the text in the source window, and positions the keyboard
cursor at the end of the file.

View Menu
The following enhancements have been made to commands in the View menu.

Recall Panel

Improvements have been made in the algorithm which recognizes the function name in the
source code text.

• If you place the keyboard cursor over a function name, Recall Panel recognizes the function
name even if it is not followed by a parameter list. Thus, you can simply type a function
name into the Source window and execute Recall Panel.

• Recall Panel can find a function call within an expression. For example, if you place the
keyboard cursor at the beginning of the following line

if ((x = fn (a, b)) == 0)

Recall Panel finds the function call

x = fn (a, b)

• If a function call is split among several lines, you can place the keyboard cursor on any of
the lines and Recall Panel can still find the function call.

Find Function Panel

In previous versions of LabWindows/CVI, the Find Function Panel command required that you
enter the complete name of a function. In effect, it was only matching on the whole word.

Now, an explicit Whole Word option has been added, and it is disabled by default. Thus, you
can enter just a substring, and Find Function Panel finds all functions that contain that substring
anywhere in their names. For instance, if you enter

ctrl

and click on OK , a dialog box appears with a list of functions including NewCtrl ,
SetCtrlVal , GetCtrlVal , and so on.

Chapter 2 Updates to the User Manual

© National Instruments Corporation 2-19 LabWindows/CVI 4.0 Addendum

Also, a shortcut key, <Ctrl-Shift-P> has been added for the Find Function Panel command.

Run Menu
The following changes and additions have been made to the Run menu.

Terminate Execution Shortcut Key Changed for
Windows 95/NT

The short-cut key for terminating execution of a suspended program or suspending a running
program is <Ctrl>-F12 on Windows 95 and NT.

Activate Panels When Resuming

You can use Activate Panels when Resuming to choose whether the user interface panels in
your programs are reactivated every time you resume execution during debugging. By default,
this option is enabled. Activating the panels whenever you resume guarantees that the activation
state of every panel is identical to what it would be if you were not debugging. In general,
however, this is not important, and activating panels each time you resume can be time
consuming.

If you disable this option, your panels are activated when your program causes events to be
processed or explicitly displays, activates, hides, or discards panels.

This option is saved from CVI session to session, not in the project file.

Options Menu
The following commands have been added to the Options menu or modified for Windows
95/NT.

Colors

The Color dialog box contains eight new color types for syntax coloring. Refer to the Syntax
Coloring section later in this chapter for more details.

A new checkbox, Use System Colors, has been added for Windows 95. When enabled, this
option removes from the list box several color types associated with the Project window, Source

Updates to the User Manual Chapter 2

LabWindows/CVI 4.0 Addendum 2-20 © National Instruments Corporation

window, and scroll bars. Colors are automatically assigned to these types based on the system
colors defined in the Appearance tab in the Windows 95 Display Properties dialog box.

Syntax Coloring

When you enable the Syntax Coloring option, LabWindows/CVI color codes the various types
of tokens in your source and include files. The following are the different types of tokens that
can be color coded.

• C keywords

• identifiers

• comments

• integers

• real numbers

• strings

• preprocessor directives

• user-defined tokens

You can set the color for token type via the Color command in the Options menu.

You can create the list of user-defined tokens via the User Defined Tokens for Coloring
command in the Options menu.

User Defined Tokens for Coloring

You can use the User Defined Tokens for Coloring command to define tokens that can be
displayed in a unique color when the Syntax Coloring option is enabled. You use the Colors
command to set the color. Each token must be in the form of a valid C identifier. You can cause
a token to be saved in your project file or saved from one CVI session to another without regard
to which project is loaded.

Generate DLL Import Source (Windows 95/NT Only)

(This command replaces the Generate DLL Glue Source command available in
LabWindows/CVI for Windows 3.1.)

This command generates source code that can be used to create a DLL import library. In general,
you do not need to use this command. For most cases, you can generate a DLL import library
directly using the Generate DLL Import Library command. Use this command only when you

Chapter 2 Updates to the User Manual

© National Instruments Corporation 2-21 LabWindows/CVI 4.0 Addendum

must do special processing in the DLL import library. LabWindows/CVI never requires such
special processing.

The Generate DLL Import Source command is enabled only when you have an include file in
the Source window. The include file should contain declarations of all of the functions you want
to access from the DLL. When you execute the command a file dialog box appears. Enter the
pathname of the DLL.

The command generates the import library source into a new Source window. You can modify
the code, including making calls to functions in other source files. Create a new project
containing the source file and any other files it references. Select Static Library from the
submenu attached to the Target command in the Build menu of the Project window. Execute
the Create Static Library command.

Note: You cannot export variables from a DLL using the import library source code
generated by this command. When you want to export a variable, create functions to
get and set its value or create a function to return a pointer to the variable.

Note: When you edit the source code generated by this command, you cannot use the
__import qualifier on the function declarations in the DLL include file.

Note: The import source code does not operate in the same way as a normal DLL import
library. When you link a normal DLL import library into an executable, the operating
system attempts to load the DLL as soon as the program starts. The import source
generated by LabWindows/CVI is written so that the DLL is not loaded until the first
function call into it is made.

Generate DLL Import Library (Windows 95/NT Only)

(This command replaces the Generate DLL Glue Code command available in
LabWindows/CVI for Windows 3.1.)

This command generates a DLL import library. The command is enabled only when you have an
include file in the Source window. The include file should contain declarations of all of the
functions and global variables you want to access from the DLL. When you execute the
command, you have the option to generate an import library for each of the compatible external
compilers rather than just for the current compatible compiler. A file dialog box then appears.
Enter the pathname of the DLL.

The command generates a .lib file with the same base name as the include file. If you choose
to create an import library for each compiler, the files are created in subdirectories named MSVC,
BORLAND, WATCOM, and SYMANTEC. The library for the current compatible compiler is also
created in the directory of the DLL.

Updates to the User Manual Chapter 2

LabWindows/CVI 4.0 Addendum 2-22 © National Instruments Corporation

Create Object File

For Windows 95 and NT, the Create Object File command has been modified so that it gives
you the option of creating an object file for each of the compatible external compilers rather than
just for the current compatible compiler. If you chose to create an object file for each compiler,
the files are created in subdirectories named MSVC, BORLAND, WATCOM, and SYMANTEC. The
object file for the current compatible compiler is also created in the parent directory.

Chapter 2 Updates to the User Manual

© National Instruments Corporation 2-23 LabWindows/CVI 4.0 Addendum

Function Panel Changes
This chapter discusses the changes to the Function Panel window, including the menu commands
accessible from the Function Panel window. This chapter generally follows the organization of
Chapter 4, Using Function Panels, of the User Manual. The changes apply to all platforms,
unless otherwise marked.

Code Menu
The following command has been added to the Code menu.

Select Variable

The Select Variable command gives you a list of previously used variables or expressions
having data types that are compatible with the currently active function panel control. The
command is enabled only when the currently active function panel control is one that accepts
text entry. When you select a variable or expression from the list, it is copied into the function
panel control. The Select Variable command can significantly reduce the amount of keyboard
entry needed when using function panels.

When you execute the Select Variable command, the Select Variable or Expression dialog box
appears.

Updates to the User Manual Chapter 2

LabWindows/CVI 4.0 Addendum 2-24 © National Instruments Corporation

Figure 2-5. The Select Variable or Expression Dialog Box

• Data Type of Control—Indicates the data type of the currently active function panel
control.

• Variable or Expression—This list box column contains the variables and expressions that
have data types compatible with the data type of the control.

• Data Type—This list box column indicates the data type of each variable and expression.

• Show Project Variables—This option adds to the list box global variables (both static and
non-static) defined in project files that have been successfully compiled.

• OK—This button dismisses the dialog box and copies the variable or expression into the
function panel control. It may add a leading ampersand (&) when the function panel control
is an output control. It may add one or more leading asterisks (*) or a trailing array
indexation ([0]) when needed to correctly match the data type of the control.

• Cancel—This button cancels the operation.

What Can be Included in the List Box

The following items are considered for inclusion in the list box.

• Variables declared in the Interactive Execution window.

• Variables declared using the Declare Variable command in a function panel.

Chapter 2 Updates to the User Manual

© National Instruments Corporation 2-25 LabWindows/CVI 4.0 Addendum

• Variables or expressions used in function panels that are executed.

• Variables or expressions used the function panels from which code is inserted into a source
window.

• User interface panel handle variables added to a source window by CodeBuilder.

• Variables declared as global or static global in a project file that has been successfully
compiled, but only if the Show Project Variables option has been enabled in the dialog box.

Some or all of these items are cleared from memory when you unload the current project or
execute the Clear Interactive Declarations command in the Build menu.

Data Type Compatibility

Compatibility between data types is a more complex issue than might be expected. In the end,
heuristics must be used. The heuristics differ based on whether the variable is known to the
compiler.

Variables known to the compiler include variables declared in the Interactive Window, and
variables declared in project files that have been successfully compiled. For such variables, the
following are the major factors in determining whether the variable is type-compatible with a
function panel control.

• Data types declared with the typedef keyword are reduced to their most intrinsic type, as
long as the typedef is known to the compiler. For example, assume the following
declarations have been processed by the compiler.

typedef int typeA;
typedef int typeB;
typedef typeB typeC;

Then a variable of type typeA is an exact match for a function panel control having type
typeC .

• All numeric types are considered compatible with each other, except that floating point
variables or expressions are not considered compatible with integer function panel controls.

• Types that have the same base type but differ in levels of indirection are considered to be
compatible. For example, the following are all compatible:

int
int *
int **
int [];

An expression or a variable name not known to the compiler must match exactly to the function
panel control’s data type to be included in the list box. (An example of a variable name not

Updates to the User Manual Chapter 2

LabWindows/CVI 4.0 Addendum 2-26 © National Instruments Corporation

known to the compiler is one used in a function panel from which code has been inserted into a
source window.)

Note: An expression or variable name not known to the compiler can be associated with
multiple data types. For instance, you might use the same variable name in an int
control and a double control. If the variable is not known to the compiler,
LabWindows/CVI has no way of knowing the true data type of the variable name.
Thus, you might see the variable name associated with different data types.

Sorting of List Box Entries

The entries in the list box are first sorted by data type. The most compatible data types are
shown first. (Exception: Some function panel controls are declared with “meta” data types, such
as numeric array , any array , or any type . Such controls are equally compatible with
a wide range of data types. In this case, the order of data types does not indicate differing
degrees of compatibility.)

Within each data type, the entries are sorted alphabetically by the variable/expression text.

Chapter 3
Updates to the User Interface
Reference Manual

Chapter Contents
Changes to the User Interface Library .. 4
Summary of Major Enhancements .. 4
Corrections to Documentation .. 4

VAL_PORTRAIT and VAL_LANDSCAPE Values ... 4
RegisterWinMsgCallback.. 5

Using Zooming and Panning on Graph Controls... 5
Zooming and Panning on Graphs .. 5

Using Canvas Controls... 6
Canvas Controls.. 6

CodeBuilder Changes... 6
New Qualifier for Callback Functions... 7
Additions to Table 3-2, Panel Attributes ... 7
Additions to Table 3-5, Font Values ... 8
Additions to Table 3-6, Menu and Menu Item Attributes .. 8
Additions to Table 3-7, Key Modifiers and Virtual Keys .. 8
Additions to Table 3-9, Control Attributes.. 9
Addition to Table 3-10, Control Styles for ATTR_CTRL_STYLE... 9
Programming with Canvas Controls.. 9

Functions for Drawing on Canvas ... 10
Batch Drawing .. 10
Canvas Coordinate System.. 11
Offscreen Bitmap .. 11
Clipping .. 11
Background Color ... 11
Pens.. 12
Pixel Values .. 12
Canvas Attributes.. 12
Canvas Attribute Discussion.. 14

Using Rect and Point Structures.. 15
Functions and Macros for Making Rects and Points .. 16
Functions for Modifying Rects and Points... 17
Functions for Comparing or Obtaining Values from Rects and Points 17

Using Bitmap Objects... 18
Functions for Creating, Extracting, or Discarding Bitmap Objects 18
Windows Metafiles... 19
Functions for Displaying or Copying Bitmap Objects.. 19

Functions for Retrieving Image Data from Bitmap Objects ... 19
Additions to Table 3-16, Graph and Strip Chart Attributes ... 20
Changes to the Picture Control Image Bits functions .. 24

Image Bits Functions Superseded by New Functions... 24
24-Bit Pixel Depth Supported in Image Bits Functions.. 24

Using the System Attributes.. 24
Additions to Table A-1, User Interface Library Error Codes... 26

New User Interface Library Functions.. 27
AllocBitmapData... 27
CanvasClear.. 28
CanvasDefaultPen... 29
CanvasDimRect... 30
CanvasDrawArc.. 31
CanvasDrawBitmap... 32
CanvasDrawLine... 34
CanvasDrawLineTo... 35
CanvasDrawOval... 36
CanvasDrawPoint.. 37
CanvasDrawPoly... 38
CanvasDrawRect... 39
CanvasDrawRoundedRect... 40
CanvasDrawText... 41
CanvasDrawTextAtPoint ... 44
CanvasEndBatchDraw... 46
CanvasGetClipRect.. 47
CanvasGetPenPosition... 47
CanvasGetPixel... 48
CanvasGetPixels.. 50
CanvasInvertRect... 51
CanvasScroll.. 53
CanvasSetClipRect.. 54
CanvasSetPenPosition... 55
CanvasStartBatchDraw.. 56
CanvasUpdate.. 57
ClearAxisItems.. 58
ClipboardGetBitmap.. 59
ClipboardGetText .. 60
ClipboardPutBitmap .. 61
ClipboardPutText .. 61
DeleteAxisItem.. 62
DiscardBitmap... 63
Get3dBorderColors.. 63
GetAxisItem.. 64
GetAxisItemLabelLength .. 66
GetAxisScalingMode... 67

GetBitmapData.. 68
GetBitmapFromFile... 70
GetBitmapInfo... 71
GetCtrlBitmap ... 72
GetCtrlDisplayBitmap... 73
GetNumAxisItems... 74
GetPanelDisplayBitmap... 75
GetSystemAttribute ... 76
InsertAxisItem... 77
LoadMenuBarEx ... 78
LoadPanelEx ... 80
MakePoint... 81
MakeRect.. 82
NewBitmap... 83
PlotScaledIntensity .. 84
PointEqual... 88
PointPinnedToRect.. 88
PointSet... 89
RectBottom... 90
RectCenter... 90
RectContainsPoint... 91
RectContainsRect.. 91
RectEmpty... 92
RectEqual.. 93
RectGrow.. 93
RectIntersection... 94
RectMove.. 94
RectOffset... 95
RectRight.. 96
RectSameSize.. 96
RectSet.. 97
RectSetBottom... 97
RectSetCenter.. 98
RectSetFromPoints .. 98
RectSetRight.. 99
RectUnion... 100
ReplaceAxisItem... 100
SetAxisScalingMode... 102
SetCtrlBitmap.. 103
SetSystemAttribute.. 105

Changes to the User Interface Library
This section presents changes made to the LabWindows/CVI User Interface Library.

The User Interface library is documented in the User Interface Reference Manual.

Summary of Major Enhancements
The major enhancements made the User Interface library are the following.

• A new control type, canvas, has been added. You can execute arbitrary drawing commands
within a canvas control. A set of canvas drawing functions have been added. Functions have
also been added for handling rectangles, points, and bitmaps.

• Functions have been added that you can use to copy text and images to and from the
Windows system clipboard.

• You can now have a second Y axis on a graph.

• You can now scale the values shown on graph and strip chart axes.

• You can now reverse the polarity of the graph and strip chart axes.

• You can now create your own strings for tick labels on graphs and strip charts.

• You can now use interactive zooming and panning on graphs.

• You can now use 24-bit pixel depths with bitmap images.

• On Windows 95, the native system dialog boxes are used for the FileSelectPopup ,
MultiFileSelectPopup , and DirSelectPopup functions.

• You can now use Windows metafiles (.WMF) as an image type.

Corrections to Documentation
The following corrections should be made to the LabWindows/CVI User Interface Reference
Manual.

VAL_PORTRAIT and VAL_LANDSCAPE Values

In Table 3-21 on page 3-74 of the LabWindows/CVI User Interface Reference Manual, the
numeric values shown for VAL_PORTRAIT and VAL_LANDSCAPE are incorrect. The
following are the correct values.

1 = VAL_PORTRAIT

2 = VAL_LANDSCAPE

RegisterWinMsgCallback

In the documentation for the RegisterWinMsgCallback function on page 4-132 of the
LabWindows/CVI User Interface Reference Manual, the description for the messageIdentifier
parameter should be changed to the following.

A user-defined string that allows two processes to use the same Windows message number. If
you pass zero (0), a unique Windows message number is generated. If you pass a string, all
subsequent calls to RegisterWinMsgCallback (or RegisterWindowMessage in the
Windows API) using the same messageIdentifier string will return the same message number.

Using Zooming and Panning on Graph
Controls
The following should be added to the Graph Controls section in Chapter 1, User Interface
Concepts in the LabWindows/CVI User Interface Reference Manual.

Zooming and Panning on Graphs

You can use zooming—the ability expand or contract the viewport around a particular point—in
graph controls. When you zoom in, the logical area contained in the viewport gets smaller,
thereby showing the area with more resolution. When you zoom out, the viewport shows a wider
area. You can also use panning, the ability to shift the viewport.

By default, however, zooming and panning are disabled. You must explicitly enable them in the
User Interface Editor or programmatically. Also, a graph control must not be in indicator-only
mode if zooming and panning are to be used.

To start zooming in on a point, press the <Ctrl> key and left mouse button down over the point.
The resolution in the viewport is continuously increased until you release the mouse. (You do
not need to keep the <Ctrl> key down.) If you drag the mouse, the zooming continues but does
so over the new point under the mouse cursor. The zooming stops when you release the left
mouse button or click on the right mouse button.

You zoom out just like you zoom in, except that you use the right mouse button instead of the
left mouse button.

To start panning, press the <Ctrl-Shift> keys and the left mouse button over a point on the
viewport. Then drag the mouse to another point. The graph viewport is scrolled so that the
original point now appears under the new mouse cursor location. You can drag the mouse
anywhere on the screen.

To restore the viewport to its original state after zooming or panning, press <Ctrl-Spacebar>.

If you are using auto-scaling in the graph, the auto-scaling must be temporarily disabled while
zooming or panning. If any plotting occurs while the end-user is zooming or panning, the
zooming or panning is terminated and the new data is shown using auto-scaling.

Using Canvas Controls
The following section should be added after the Timer Controls section in Chapter 1, User
Interface Concepts in the LabWindows/CVI User Interface Reference Manual.

Canvas Controls

Use canvas controls as an arbitrary drawing surface. You can draw text, shapes, and bitmap
images. An offscreen bitmap is maintained so that the appearance of the canvas can be restored
when the region is exposed.

If you want to display images that are not rectangular or that have “holes” in them, you can use
bitmaps that have a transparent background.

CodeBuilder Changes
The following changes have been made to the Generate » All Code and Generate » Main
Function commands in the Code menu of the User Interface Editor window. (These commands
are discussed in Chapter 2, User Interface Editor Reference, of the LabWindows/CVI User
Interface Reference Manual).

WinMain

A new checkbox, Generate WinMain() instead of main(), has been added to the Generate All
Code and Generate Main Function dialog boxes. Enable this option if you want to use WinMain
instead of main for your main program. In LabWindows/CVI, you can use either function as
your main program. When linking your application in an external compiler, it is easier to use
WinMain .

DLL Projects

If your project target is a DLL, neither WinMain or main are generated. Instead, a DLLMain
function is generated. The bulk of the User Interface function calls, however, are generated in a

function call InitUIForDLL . You can call InitUIForDLL in your DLL at the point you
want to load and display panels.

InitCVIRTE and CloseCVIRTE Functions

When you link your executable or DLL in an external compiler, you need to include a call to the
InitCVIRTE function in WinMain , main , or DLLMain . In a DLL, you also need to include
a call to CloseCVIRTE . See the Calling InitCVIRTE and CloseCVIRTE section in
Chapter 1, Updates to the Programmer Reference Manual, in this document.

CodeBuilder automatically generates the necessary calls to InitCVIRTE and CloseCVIRTE
in your WinMain , main , or DLLMain function. It also automatically generates a #include
statement for the cvirte.h file. It generates this code within comment markers. If you are
going to use an external compiler, remove the comment markers from these lines.

New Qualifier for Callback Functions
The following paragraph should be added before the last paragraph in the Using Callback
Functions to Respond to User Interface Events section in Chapter 3 of the User Interface
Reference Manual.

The CVICALLBACK macro should precede the function name in the declarations and function
headers for all user interface callbacks. This ensures that the functions are treated by the
compiler as cdecl (or stack-based in WATCOM), even when the default calling convention is
stdcall . CVICALLBACK is defined in cvidefs.h , which is included by userint.h .
The CVICALLBACK macro is included where necessary in the header files generated by the
User Interface Editor and in source code generated by CodeBuilder.

Additions to Table 3-2, Panel Attributes
The following new information belongs in Table 3-2 of the LabWindows/CVI User Interface
Reference Manual.

ATTR_ACTIVE int Indicates whether the panel or one of its child
panels is the active panel.
(GetPanelAttribute only.)

ATTR_CONFORM_TO_SYSTEM int Specifies whether the panel and its controls use the
system colors. Subsequent new controls also use
system colors. (This is useful only on Windows 95.
Other platforms always use panel gray and black .)

ATTR_FLOATING int Specifies whether the panel floats above all non-
floating panels. Applies to top-level panels in
Microsoft Windows.

Additions to Table 3-5, Font Values
The following new information belongs in Table 3-5 of the LabWindows/CVI User Interface
Reference Manual.

Type Value

Platform independent font VAL_MESSAGE_BOX_FONT

Platform independent metafont VAL_MESSAGE_BOX_META_FONT

Also, add the following to the Platform-Independent Metafonts That Are Resident on PCs and
UNIX section on page 3-19 of the LabWindows/CVI User Interface Reference Manual.

VAL_MESSAGE_BOX_META_FONT is the font used by LabWindows/CVI for message boxes.
On Windows 95, it is the font used by Windows 95 for message boxes. On other platforms, it is
the same as VAL_DIALOG_META_FONT.

Additions to Table 3-6, Menu and Menu Item
Attributes
The following new information belongs in Table 3-6 of the LabWindows/CVI User Interface
Reference Manual.

Menu
Bar Only

ATTR_DRAW_LIGHT_BEVEL int Indicates whether the menubar draws with
a light or dark bevel at the bottom.
(Applies only to Windows 95.)
 0 = Dark Bevel (the default)
 1 = Light Bevel

Additions to Table 3-7, Key Modifiers and
Virtual Keys
The following new information belongs in Table 3-7 of the LabWindows/CVI User Interface
Reference Manual.

Key Modifiers VAL_UNDERLINE_MODIFIER
<ALT> on the PC and the SPARCstation.
Also, optionally, <META> on the SPARCstation.

Additions to Table 3-9, Control Attributes
The following new information belongs in Table 3-9 of the LabWindows/CVI User Interface
Reference Manual.

For all controls
ATTR_OVERLAPPED int Indicates whether the control is overlapped by

another control (or its own parts).
(GetCtrlAttribute only)

For list boxes

ATTR_ALLOW_ROOM_FOR_IMAGESint Specifies whether, when calculating the list box
height, to assume that one or more list box labels
may contain an image. Normally, the calculation
of the list box height takes into account the image
height only if there currently is an image in the
list box. To make sure that the list box height
always takes into account the height of an image,
set this attribute to TRUE (1).

ATTR_HILITE_CURRENT_ITEM int Specifies whether to highlight the currently
selected item in a list box. (The highlight is
shown in reversed colors when list box is active,
a dashed box when inactive.)

ATTR_PICT_BGCOLOR now applies to canvas controls, as well as to picture controls and
picture rings.

Addition to Table 3-10, Control Styles for
ATTR_CTRL_STYLE
The following new information belongs in Table 3-10 of the LabWindows/CVI User Interface
Reference Manual .

Canvas CTRL_CANVAS

Programming with Canvas Controls
Use a canvas control to add an arbitrary drawing surface to your project. You can draw text,
shapes, and bitmap images. This section describes how you can use the User Interface Library
functions and attributes with canvas controls.

Functions for Drawing on Canvas

Use the following functions to draw on a canvas.

• CanvasDrawPoint to draw a point.

• CanvasDrawLine to draw a line.

• CanvasDrawLineTo to draw a line from the current pen position.

• CanvasDrawRect to draw a rectangle.

• CanvasDimRect to overlay a checkerboard pattern in a rectangular area.

• CanvasDrawRoundedRect to draw a rectangle with rounded corners.

• CanvasDrawOval to draw an oval.

• CanvasDrawArc to draw an arc.

• CanvasDrawPoly to draw a polygon.

• CanvasDrawText to draw text within a rectangular area.

• CanvasDrawTextAtAPoint to draw text at an anchor point.

• CanvasDrawBitmap to draw a bitmap image.

• CanvasScroll to scroll a rectangular area.

• CanvasInvertRect to invert the colors in a rectangular area.

• CanvasClear to restore a rectangular area to the canvas background color.

Batch Drawing

Although, the drawing functions can be called at any time, they are most efficient when called
from within a batch drawing operation. A batch drawing operation consists of a call to
CanvasStartBatchDraw , followed by one or more calls to the canvas drawing functions,
followed by a call to CanvasEndBatchDraw .

For optimal performance, users are encouraged to include as many drawing primitives as
possible within a batch drawing operation. When a drawing function is called outside of a batch
operation, the function is implicitly surrounded by calls to CanvasStartBatchDraw and
CanvasEndBatchDraw .

Canvas Coordinate System

A canvas has a built-in pixel-based Cartesian coordinate system, where (0,0) represents the top,
left corner of the canvas. All drawing is specified relative to this coordinate system. The
coordinate system can be modified using the following four attributes:

ATTR_CANVAS_XCOORD_AT_ORIGIN
ATTR_CANVAS_YCOORD_AT_ORIGIN
ATTR_CANVAS_XSCALING
ATTR_CANVAS_YSCALING

All canvas control functions use this coordinate system, except for CanvasGetPixel and
CanvasGetPixels , which use unscaled pixel coordinates rather than the canvas coordinate
system.

Offscreen Bitmap

Each canvas has an offscreen bitmap which is used to restore the appearance of the canvas when
the region is exposed. You can choose to draw directly to the screen, bypassing the offscreen
bitmap. If you draw to the offscreen bitmap, you can choose whether to update the screen
immediately or wait until draw events are processed. This is controlled by the
ATTR_DRAW_POLICY attribute.

The CanvasUpdate function immediately copies the canvas offscreen bitmap to the screen,
within a specified rectangular area.

The ATTR_OVERLAP_POLICY attribute controls what occurs when you draw to a canvas
which is overlapped by another control.

Clipping

The drawing functions are constrained by the clipping set using CanvasSetClipRect . Any
drawing outside the clipping rectangle is not rendered. You can obtain the current clipping
rectangle by calling CanvasSetClipRect.

Background Color

The background color of the canvas is controlled by the ATTR_PICT_BGCOLOR attribute.
When ATTR_PICT_BGCOLOR is changed, the entire canvas area is cleared.

Pens

Each canvas has a pen. The canvas pen attributes can be set individually using
SetCtrlAttribute . They are:

ATTR_PEN_WIDTH
ATTR_PEN_STYLE
ATTR_PEN_COLOR
ATTR_PEN_FILL_COLOR
ATTR_PEN_MODE
ATTR_PEN_PATTERN

The CanvasDefaultPen function resets all these attributes to their default values.

The location of the pen affects the starting position of the line drawn by the
CanvasDrawLineTo function. The location of the pen is affected only by the
CanvasSetPenPosition and the CanvasDrawLineTo functions. You can obtain the
location of the pen by calling CanvasGetPenPosition .

Pixel Values

You can obtain the color values of pixels in the canvas. Call CanvasGetPixel to obtain the
color of one pixel. Call CanvasGetPixels to obtain the values of the pixels within a
rectangular area. The color values are obtained from the offscreen bitmap, not the screen.

Unlike other canvas control functions, CanvasGetPixel and CanvasGetPixels use
unscaled pixel coordinates rather than the canvas coordinate system.

Canvas Attributes

The following table lists attributes unique to the canvas control. You can access these attributes
through GetCtrlAttribute and SetCtrlAttribute .

Table 3-1. Canvas Control Attributes

For canvas controls

Name Type Description

ATTR_DRAW_POLICY int Determines when drawing operations are rendered
on the offscreen bitmap and the screen. See
discussion that follows this table.

ATTR_OVERLAPPED_POLICY int Determines what occurs when you draw to a
canvas which is overlapped by another control. See
discussion that follows this table.

ATTR_PEN_COLOR int The RGB color value used to draw points, lines,
frames, and text on the canvas.

ATTR_PEN_FILL_COLOR int The RGB color value used to fill interior areas of
shapes, text backgrounds, and areas exposed by
scrolling.

ATTR_PEN_MODE int Determines the effect of drawing with the pen
color (or pen fill color), given the current color on
the screen. See discussion following this table.

ATTR_PEN_PATTERN unsigned
char[8]

Determines the pattern used to fill interior areas of
shapes. See discussion following this table.

ATTR_PEN_STYLE int The style used when drawing lines and frames. In
Windows, applies only if pen width is 1; if pen
width is greater than 1, the style is always
VAL_SOLID. See Table 3-19 in the
LabWindows/CVI User Interface Reference
Manual.

ATTR_PEN_WIDTH int The number of pixels in the width of a pen stroke.
Applies to lines, frames, and points. Valid range: 1
to 255. Default: 1.

ATTR_XCOORD_AT_ORIGIN double The horizontal coordinate mapped to the left edge
of the canvas. (Is multiplied by ATTR_XSCALING
to arrive at a pixel offset.) Default value: 0.0.

ATTR_XSCALING double The factor used to scale user-supplied horizontal
coordinates and widths into pixel-based
coordinates and widths. Default value: 1.0.

ATTR_YCOORD_AT_ORIGIN double The vertical coordinate mapped to the top edge of
the canvas. (Is multiplied by ATTR_YSCALING to
arrive at a pixel offset.) Default value: 0.0.

ATTR_YSCALING double The factor used to scale user-supplied vertical
coordinates and heights into pixel-based
coordinates and heights. Default value: 1.0.

Canvas Attribute Discussion

The following table lists the values associated with the ATTR_DRAW_POLICY attribute.

Table 3-2. Values for ATTR_DRAW_POLICY

Value Description

VAL_UPDATE_IMMEDIATELY Drawing takes place offscreen. The section of the bitmap
corresponding to the area of the drawing operation is copied into
the canvas display immediately. (This is the default.)

VAL_MARK_FOR_UPDATE Drawing takes place offscreen. The area on the canvas
corresponding to the area of the drawing operation is marked for
update. The new drawing becomes visible when draw events are
processed.

VAL_DIRECT_TO_SCREEN Drawing goes directly to the screen. The offscreen bitmap is not
updated. Although this may result in a faster drawing time,
whatever is drawn in this mode is lost when the canvas is
redrawn.

The following table lists the values associated with the ATTR_OVERLAPPED_POLICY
attribute.

Table 3-3. Values for ATTR_OVERLAPPED_POLICY

Value Description

VAL_DEFER_DRAWING If the control is overlapped and the draw policy is
VAL_UPDATE_IMMEDIATELY, new drawing does not become
visible until draw events are processed. If the draw policy is
VAL_DIRECT_TO_SCREEN, no drawing takes place at all. (This is
the default.)

VAL_DRAW_ON_TOP If the control is overlapped and the draw policy is not
VAL_MARK_FOR_UPDATE, drawing occurs on top of the
overlapping controls.

The ATTR_PEN_MODE attribute determines the effect of drawing with the pen color (or pen fill
color), given the current color on the screen. With the default setting, VAL_COPY_MODE, the
current screen color is replaced with the pen color (or pen fill color). The other settings specify
bitwise logical operations on pen color (or pen fill color) and the screen color.

Note: If a system color palette is in use, the logical operations might be performed on the
palette indices rather than the RGB values, depending on the operating system.

The following table lists the values associated with the ATTR_PEN_MODE attribute.

Table 3-4. Values for ATTR_PEN_MODE

VAL_COPY_MODE pen color (the default)

VAL_OR_MODE pen color | screen color

VAL_XOR_MODE pen color ^ screen color

VAL_AND_NOT_MODE ~(pen color) & screen color

VAL_NOT_COPY_MODE ~(pen color)

VAL_OR_NOT_MODE ~(pen color) | screen color

VAL_NOT_XOR_MODE ~(pen color ^ screen color)

VAL_AND_MODE pen color & screen color

The ATTR_PEN_PATTERN attribute determines the pattern used to fill interior areas of shapes.
The value is an 8-byte unsigned character array representing a repeating 8-by-8 grid of pixels
through which filling operations are filtered. A pixel of value 1 means that the pen fill color is
used for that pixel. A pixel value of 0 means that black is used for that pixel. The default value
for the attribute is the solid pattern, in which each byte of the array is 0xFF.

To make a pixel value of 0 mean "screen color" instead of "black", do the following.

1. Set ATTR_PEN_PATTERN to the complement of the pattern you wish to use.

2. Set ATTR_PEN_MODE to VAL_AND_MODE.

3. Set ATTR_PEN_FILL_COLOR to VAL_WHITE.

4. Use a canvas draw function, (for example, CanvasDrawRect) to fill the area.

5. Set ATTR_PEN_PATTERN to the desired pattern.

6. Change the ATTR_PEN_MODE to VAL_OR_MODE.

7. Change the ATTR_PEN_FILL_COLOR to the desired pattern color.

8. Draw again.

Using Rect and Point Structures
Two structures, Rect and Point are defined in the userint.h include file. These structures
are used to specify locations and areas in Cartesian coordinate systems, such as those used in
canvas controls and bitmaps. Many canvas control functions use these structures.

The Rect structure specifies the location and size of a rectangle. It is defined as follows.

typedef struct
 {
 int top;
 int left;
 int height;
 int width;
 } Rect;

A Point structure specifies the location of a point. It is defined as follows.

typedef struct
 {
 int x;
 int y;
 } Point;

Functions and Macros for Making Rects and Points

You might need to create a Rect or Point just to pass it to a function. You can avoid creating
a variable for this by using one of the following functions.

Rect MakeRect (int top, int left, int height, int width);
Point MakePoint (int x, int y);

For example,

CanvasDrawPoint (panel, ctrl, MakePoint (30, 40));

You can also use these function to initialize variables. For example,

Rect r = MakeRect (10, 20, 100, 130);

There are special values for the Rect height and width. Also, there are some macros for
creating commonly used rectangles. The documentation for each function indicates when these
values and macros are applicable. See the following table.

Table 3-5. Values and Macros for Rect Structures

Name Value or Definition Description

VAL_TO_EDGE -1 Set the Rect width (or height) to the
distance from the Rect left (or top) to
the right (or bottom) edge of the object.

VAL_KEEP_SAME_SIZE -2 When copying objects (such as
bitmaps), make the destination object
the same size as the source object.

VAL_EMPTY_RECT MakeRect (0, 0, 0, 0) An empty rectangle.

VAL_ENTIRE_OBJECT MakeRect (0, 0,
 VAL_TO_EDGE,
 VAL_TO_EDGE)

Make the Rect the size of the object
(for example, the canvas or bitmap).

Functions for Modifying Rects and Points

Use the following functions to set or modify the values in a Rect or Point structure.

• RectSet to set each of the four values of an existing Rect structure.

• RectSetFromPoints to set a Rect so that it defines the smallest rectangle that encloses
two points.

• RectSetBottom to set the height of a Rect so that the bottom is a given value. (The
bottom is not enclosed by the rectangle.)

• RectSetRight to set the height of a Rect so that the right edge is a given value. (The right
edge is not enclosed by the rectangle.)

• RectSetCenter to set the top and left of a Rect so that it is centered around a give value,
while keeping the same size.

• RectOffset to modify the top and left of a Rect so as to shift the location of the rectangle.

• RectMove to set the top and left of Rect to a given Point.

• RectGrow to modify the values in a Rect so that the rectangle grows or shrinks around its
current center point.

• PointSet to set the two values in an existing Point structure.

Functions for Comparing or Obtaining Values from Rects
and Points

Use the following functions to compare or obtain values from a Rect or Point structure.

• RectBottom to obtain the location of the bottom of a rectangle.

• RectRight to obtain the location of the right edge of a rectangle.

• RectCenter to obtain the location of the center of a rectangle.

• RectEqual to determine if two rectangles are identical.

• RectEmpty to determine if a rectangle is empty.

• RectContainsPoint to determine if a rectangle encloses a given point.

• RectContainsRect to determine if a rectangle completely encloses another rectangle.

• RectSameSize to determine if two rectangles are the same size.

• RectUnion to set a Rect to the smallest rectangle that encloses two given rectangles.

• RectIntersection to set a Rect to the largest rectangle that is enclosed by two given
rectangles.

• PointEqual to determine if two points are at the same location.

• PointPinnedToRect to modify a Point structure, if needed, to ensure that it is within a
give rectangle.

Using Bitmap Objects
A bitmap is a two-dimensional grid of pixels representing an image. There are some functions,
such as PlotBitmap (for graph controls) and DisplayImageFile (for picture controls)
which read an image out of a file and directly display it on a control.

There are other functions, however, which create or extract a bitmap, store them in memory, and
return a bitmap ID. You can then use the bitmap ID in other functions.

Functions for Creating, Extracting, or Discarding Bitmap
Objects

Use the following functions to create, extract, or discard bitmap objects.

• NewBitmap to create a bitmap object from scratch.

• GetBitmapFromFile to create a bitmap object using image data read from a file.

• GetCtrlBitmap to create a bitmap object from an image contained in a picture, picture
ring, picture button, canvas, or graph control.

• GetCtrlDisplayBitmap to create a bitmap object from the current appearance of a
control.

• GetPanelDisplayBitmap to create a bitmap object from the current appearance of a
specified rectangular area of a panel.

• ClipboardGetBitmap to create a bitmap object from an image (if any) in the system
clipboard

• DiscardBitmap to remove a bitmap from memory.

If you want to display images that are not rectangular or that have “holes” in them, you can use
bitmaps that have a transparent background. If you are creating your bitmap image from scratch,
you can achieve transparency by using the mask parameter to the NewBitmap function.

Windows Metafiles

A Windows metafile (.WMF) contains a description of an image that is scaleable without
distortion. The description consists of a set of drawing commands rather than a bitmap. If you
load a Window metafile image using GetBitmapFromFile , the image is converted to a
bitmap. The size of the bitmap is the original size stored in the metafile.

If you try to display this bitmap on a canvas in an area of a different size, the image stretches or
shrinks like any other bitmap. The scaling properties of the metafile are not used.

To use the scaling properties of the metafile, you must first load the metafile into a picture
control. Use the following steps.

1. Create a picture control, and hide it.

2. Hide the frame of the picture control by setting ATTR_FRAME_VISIBLE to FALSE.

3. Set the picture control to the size in which you want to display the image on the canvas.

4. Set the ATTR_FIT_MODE attribute of the picture control to VAL_SIZE_TO_PICTURE.

5. Use DisplayImageFile to load the image into the picture control.

6. Use GetCtrlBitmap to obtain a bitmap object containing the image.

Windows metafiles do not always have background colors. When a metafile image is loaded
using GetBitmapFromFile , the background is set to white. When a metafile image
contained in a control is converted to a bitmap, the background color of the control is used.

Functions for Displaying or Copying Bitmap Objects

Use the following functions to display a bitmap object in a control or copy an image from a
bitmap object to a control.

• CanvasDrawBitmap to display a bitmap in a canvas control.

• SetCtrlBitmap to set an image in a picture, picture ring, picture button, or graph control
from a bitmap object. Can be used to replace an existing image create a new image.

• ClipboardPutBitmap to copy image data from a bitmap object to the system clipboard.

Functions for Retrieving Image Data from Bitmap Objects

Use the following functions to retrieve image data from bitmap objects.

• GetBitmapInfo to obtain size information about the image associated with a bitmap. This
information can then be used in allocating the buffers to be passed to GetBitmapData .

• AllocBitmapData to allocate the buffers necessary for calling GetBitmapData . This
is an alternative to calling GetBitmapInfo and allocating the buffers yourself.

• GetBitmapData to obtain the bit values that define the image associated with a bitmap.

Additions to Table 3-16, Graph and Strip
Chart Attributes
The following new items belong in Table 3-16 of the LabWindows/CVI User Interface Reference
Manual.

For graphs and strip charts

ATTR_INNER_LOG_MARKERS_VISIBLE int Specifies whether labels and tick marks are
shown next to the inner grid lines of log
scale axes.
(Default value: FALSE)

ATTR_XAXIS_GAIN double The factor used to scale the value labels on
the X axis. For example, if the X value is
10.0 and ATTR_XAXIS_GAIN is 2.0, then
the label on the X axis shows as 20.0.
(Default value: 1.0)

ATTR_XAXIS_OFFSET double The amount added to the value labels on the
X axis. For example, if the X value is 10.0
and ATTR_XAXIS_OFFSET is 5.0, then the
label on the X axis shows as 15.0. The X
value is multiplied by ATTR_XAXIS_GAIN
before ATTR_XAXIS_OFFSET is added.
(Default value: 0.0)

ATTR_XUSE_LABEL_STRINGS int Whether the X axis numerical value labels
are replaced by strings associated with the X
values. These strings can be specified either
in the User Interface Editor or by calling the
InsertAxisItem function.

continues

For graphs and strip charts (Continued)

ATTR_YAXIS_GAIN double The factor used to scale the value labels on
the Y axis. For example, if the Y value is
10.0 and ATTR_YAXIS_GAIN is 2.0, then
the label on the Y axis shows as 20.0.
(Default value: 1.0)

ATTR_YAXIS_OFFSET double The amount added to the value labels on the
Y axis. For example, if the Y value is 10.0
and ATTR_YAXIS_OFFSET is 5.0, then the
label on the Y axis shows as 15.0. The Y
value is multiplied by ATTR_YAXIS_GAIN
before ATTR_YAXIS_OFFSET is added.
(Default value: 0.0)

ATTR_YAXIS_REVERSE int Whether to reverse the orientation of the Y
axis so that the lowest value is shown at the
top. If the orientation of the Y axis is
reversed, the vertical orientation of the plots
is also reversed.

ATTR_YUSE_LABEL_STRINGS int Whether the Y axis numerical value labels
are replaced by strings associated with the Y
values. These strings can be specified either
in the User Interface Editor or by calling the
InsertAxisItem function.

For graphs only

ATTR_ACTIVE_YAXIS int Which of the two Y axes is used in plotting,
setting a Y axis attribute, setting the Y axis
range, or creating a graph cursor.
Values: VAL_LEFT_YAXIS,
VAL_RIGHT_YAXIS.

ATTR_ENABLE_ZOOMING int Whether the end-user can interactively zoom
and pan the graph viewport.

Default: FALSE

ATTR_XREVERSE int Whether to reverse the orientation of the X
axis so that the lowest value is shown at the
right. If the orientation of the X axis is
reversed, the horizontal orientation of the
plots is also reversed.

For graph cursors (GetCursorAttribute and SetCursorAttribute)

ATTR_CURSOR_YAXIS int Used to change the Y axis to which a graph
cursor is associated. When you create a
graph cursor, its associated Y axis is
determined by the value of
ATTR_ACTIVE_YAXIS.

Afterwards, the association can be changed
using ATTR_CURSOR_YAXIS. The
associated axis serves as the reference for
the cursor position coordinates used in calls
to SetGraphCursor and
GetGraphCursor .
Values: VAL_LEFT_YAXIS,
VAL_RIGHT_YAXIS.

For graph plots (GetPlotAttribute and SetPlotAttribute)

ATTR_PLOT_ORIGIN int Determines the placement of a text string or
bitmap with respect to the coordinates
specified in a call to PlotText or
PlotBitmap . See discussion following this
table.

ATTR_PLOT_SNAPPABLE int By default, graph cursors for which
ATTR_CURSOR_MODE is
VAL_SNAP_TO_POINT snap to the closest
plot. To prevent cursors from snapping to a
particular plot, set
ATTR_PLOT_SNAPPABLE for the plot to
FALSE.

ATTR_PLOT_YAXIS int Used to change the Y axis with which a plot
is associated. When a plot is first plotted, the
Y axis to which it is associated is determined
by the value of ATTR_ACTIVE_YAXIS.

Afterwards, the association can be changed
using ATTR_PLOT_YAXIS.
Values: VAL_LEFT_YAXIS,
VAL_RIGHT_YAXIS.

Plot Origin Discussion

When PlotText or PlotBitmap is called, the text string or bitmap is placed on the graph
with respect to a point specified by coordinates passed into the function. The orientation of the
string or bitmap with respect to the point is determined by the ATTR_PLOT_ORIGIN attribute.
The attribute specifies where the point (that is, the origin) is with respect to the rectangle that

implicitly encloses the string or bitmap. For example, VAL_LOWER_LEFT (the default value)
specifies that the string or bitmap be plotted so that the lower left corner of its enclosing
rectangle is at the point specified.

The possible values are shown in the following table.

Table 3-6. Values for ATTR_PLOT_ORIGIN

Value Description

VAL_LOWER_LEFT The lower left corner of the enclosing rectangle.

VAL_CENTER_LEFT The midpoint of the left edge of the enclosing rectangle.

VAL_UPPER_LEFT The upper left corner of the enclosing rectangle.

VAL_LOWER_CENTER The midpoint of the bottom edge of the enclosing rectangle.

VAL_CENTER_CENTER The center of the enclosing rectangle.

VAL_UPPER_CENTER The midpoint of the top edge of the enclosing rectangle.

VAL_LOWER_RIGHT The lower right corner of the enclosing rectangle.

VAL_CENTER_RIGHT The midpoint of the right edge of the enclosing rectangle.

VAL_UPPER_RIGHT The upper right corner of the enclosing rectangle.

Two Y Axis (graphs only)

There are always two Y axes on a graph. By default, only the left Y axis is visible.

You can make the Y axis visible by using the following code.

SetCtrlAttribute (panel, ctrl, ATTR_ACTIVE_YAXIS, VAL_RIGHT_AXIS);
SetCtrlAttribute (panel, ctrl, ATTR_YLABEL_VISIBLE, 1);

You can choose to make either one, both, or none of the Y axes visible.

The ATTR_ACTIVE_YAXIS attribute determines which of the two Y axes are used for the
following actions.

• Adding a plot to the graph. (The active Y axis serves as the scaling reference.)

• Setting a Y axis attribute. (Each Y axis has its own attribute values.)

• Setting the Y axis range.

• Creating a graph cursor. (The cursor is associated with the active Y axis.)

Once a plot has been added to a graph, you can associate it with the other Y axis by using the
ATTR_PLOT_YAXIS attribute.

Once a graph cursor has been created, you can associate it with the other Y axis by using the
ATTR_CURSOR_YAXIS attribute. The associated Y axis serves as the reference for the cursor
position coordinates in calls to SetGraphCursor and GetGraphCursor .

Changes to the Picture Control Image Bits
functions

Image Bits Functions Superseded by New Functions

When picture controls were added to LabWindows/CVI you were able to manipulate bitmaps in
picture controls using the following four functions.

GetImageBits
SetImageBits
GetImageInfo
AllocImageBits

Now, a more general set of functions for handling bitmap images as independent objects have
been added. See the section Functions for Creating, Extracting, or Discard Bitmap Objects,
earlier in this chapter. We recommend that you use these new functions with picture controls
rather than the four functions listed here. Nevertheless, you can continue to use the original four
functions.

24-Bit Pixel Depth Supported in Image Bits Functions

You can now use a 24-bit pixel depth in the four picture control image bits functions. When you
do, the color table parameters to the functions are not used. The array of bits contains RGB
values rather than indexes into the color table. Each RGB value in the array of bits represented
by a 3-byte value of the form

0xRRGGBB

where RR, GG, and BB represent the red, green and blue intensity of the color. The RR byte
should always be at the lowest memory address of the three bytes.

Using the System Attributes
The system attributes are set and obtained using the SetSystemAttribute and
GetSystemAttribute functions. They are attributes that apply to the User Interface Library
in general, rather than to particular instances of user interface objects. The following table lists
the system attributes.

Table 3-7. System Attributes

Attribute Type Notes

ATTR_ALLOW_UNSAFE_TIMER_EVENTSinteger 1 - Allow unsafe timer events.
0 - Do not allow unsafe time events (the default)
(Windows 95 and NT only).
See discussion below.

Unsafe Timer Events

By default, timer control callbacks do not occur on MS Windows while you are moving or sizing
a window, while the system menu is pulled down, or while the Alt-Tab key is pressed. (These
conditions are called event-blocking conditions.) On Windows 95 and NT, you can use the
ALLOW_UNSAFE_TIMER_EVENTS attribute to enable timer events under some, but not all, of
the event-blocking conditions. If you set the ALLOW_UNSAFE_TIMER_EVENTS attribute to
TRUE, timer events are blocked only under the following conditions.

• You have clicked on a window title bar, you are holding the mouse button down, but you are
not moving the mouse.

• You are moving or resizing a window, and the Windows 95 "Show Window Contents While
Dragging" option is disabled (or you are running on Windows NT.)

There are several limitations to this feature. One limitation is that while an event-blocking
condition is in effect, timer callbacks are called no faster than once per 55 milliseconds.

Another limitation is that if a timer callback is called during an event-blocking condition and the
callback causes events to be processed, mouse and keyboard input can behave erratically. Your
program can cause this to happen in the following ways.

• The timer callback function calls ProcessSystemEvents in a loop.

• The timer callback function calls RunUserInterface , GetUserEvent , or a popup
panel function such as MessagePopup or FileSelectPopup .

• Program execution is suspended in the timer callback function because of a breakpoint or
run-time error.

In either case, the system functions normally once the timer callback returns.

This problem is inherent to Windows and occurs regardless of the development environment.

You should not enable this attribute until the code in your timer callbacks has been thoroughly
debugged. The behavior of the system is undefined if you hit a breakpoint or run-time error
when an event-blocking condition is in effect.

Additions to Table A-1, User Interface
Library Error Codes
The following updates belong in Table A-1 of the LabWindows/CVI User Interface Reference
Manual.

-124 Intensity plots cannot use transparent colors.

-125 Color is invalid.

-126 The specified callback function differs only by a leading underscore from another
function or variable. Change one of the names for proper linking.

-127 Bitmap is invalid.

-128 There is no image in the control.

New User Interface Library Functions

AllocBitmapData
int status = AllocBitmapData (int bitmapID , int ** colorTable, char ** bits,

unsigned char ** mask);

Purpose

Allocates the buffers necessary for calling GetBitmapData on a bitmap. If you use
GetBitmapInfo , you must allocate the buffers yourself.

You must free the buffers when you are done with them.

Parameters

Input bitmapID integer The ID of the bitmap object containing the image. The
ID must have been obtained from NewBitmap ,
GetBitmapFromFile , GetCtrlBitmap ,
ClipboardGetBitmap ,
GetCtrlDisplayBitmap , or
GetPanelDisplayBitmap .

Output colorTable pointer to
integer

A pointer variable into which the address of the allocated
color table buffer is placed.

bits pointer to
unsigned
char

A pointer variable into which the address of the allocated
bits data buffer is placed.

mask pointer to
unsigned
char

A pointer variable into which the address of the allocated
mask buffer is placed.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

You may pass NULL for any of the colorTable, bits, or mask parameters if you do not want the
corresponding buffer to be allocated.

If the image does not exist, the colorTable, bits, and mask parameters are set to NULL. The
colorTable parameter is set to NULL if the pixel depth of the image is greater than 8. The mask
parameter is set to NULL if the image does not have a mask.

Warning: You must free the colorTable, bitmap, and mask buffers when you are done
with them. Use the ANSI C Library free function.

See Also

GetBitmapData, GetBitmapInfo

CanvasClear
int status = CanvasClear (int panelHandle, int controlID , Rect rect);

Purpose

Restores the specified rectangular area of a canvas control to the background color of the canvas
control. The background color of the canvas control is determined by the
ATTR_PICT_BGCOLOR attribute.

This operation is not restricted to the canvas clipping rectangle.

Parameters

 Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

rect Rect A Rect structure specifying the location and size of the
rectangle to be cleared. Use VAL_ENTIRE_OBJECT to
specify the entire canvas.

Return Value

status integer Refer to Appendix A for error codes.

See also

MakeRect

CanvasDefaultPen
int status = CanvasDefaultPen (int panelHandle, int controlID);

Purpose

Sets all of the attributes of the canvas pen to the default values. The defaults are shown in the
following table.

Canvas Pen Attribute Default Value

ATTR_PEN_WIDTH 1

ATTR_PEN_STYLE VAL_SOLID

ATTR_PEN_COLOR VAL_BLACK

ATTR_PEN_FILL_COLOR VAL_BLACK

ATTR_PEN_MODE VAL_COPY_MODE

ATTR_PEN_PATTERN A solid pattern, expressed as an array of 8
unsigned characters, each of which is
0xFF.

Parameters

 Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

Return Value

status integer Refer to Appendix A for error codes.

See Also

CanvasSetPenPosition, CanvasGetPenPosition, CanvasDrawLineTo

CanvasDimRect
int status = CanvasDimRect (int panelHandle, int controlID , Rect rect);

Purpose

Overlays a checkerboard pattern in the specified rectangular area of a canvas control. This has
the visual effect of dimming objects within the area.

The checkerboard pattern is drawn using current values of the following attribute.

ATTR_PEN_FILL_COLOR

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

rect Rect A Rect structure specifying the location and size of the
area to be dimmed. Use VAL_ENTIRE_OBJECT to
specify the entire canvas.

Return Value

status integer Refer to Appendix A for error codes.

See also

MakeRect

CanvasDrawArc
int status = CanvasDrawArc (int panelHandle, int controlID , Rect rect,

int drawMode, int beginningAngle, int arcAngle);

Purpose

Draws an arc on the canvas control. The arc is defined by specifying a rectangle that encloses the
arc, along with a beginning angle (in tenths of degrees) and an arc angle (in tenths of degrees).

The arc is a section of an oval. A beginning angle of 0 indicates that the arc starts at the
midpoint of the right edge of the rectangle. The arc angle indicates how far around the oval
(counter-clockwise, up to 3600) the arc is drawn.

The frame of the arc is drawn using the current value of the following attributes:

ATTR_PEN_COLOR
ATTR_PEN_MODE
ATTR_PEN_WIDTH
ATTR_PEN_STYLE (ignored in Windows when pen width is greater than 1)

The interior of the arc is drawn using the current value of the following attributes.

ATTR_PEN_FILL_COLOR
ATTR_PEN_MODE
ATTR_PEN_PATTERN

The frame of the arc does not include the radius lines going from the center of the oval to the
end points of the arc.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

rect Rect A Rect structure specifying the location and size of the
rectangle within which to draw the arc.

continues

Parameters (Continued)

drawMode integer Specifies whether the arc's frame or interior (or both) are
drawn. Valid values:
VAL_DRAW_FRAME
VAL_DRAW_INTERIOR
VAL_DRAW_FRAME_AND_INTERIOR

beginningAngle integer The starting angle of the arc, in tenths of degrees.

0 indicates the arc starts at the midpoint of the right edge
of the rectangle. 900 indicates that the arc starts at the
midpoint of the top edge of the rectangle. Negative
values are valid.

arcAngle integer How far around the oval (counter-clockwise, up to 3600)
the arc is drawn. Specified in tenths of degrees. Negative
values are valid.

Return Value

status integer Refer to Appendix A for error codes.

See also

MakeRect, CanvasDrawOval

CanvasDrawBitmap
int status = CanvasDrawBitmap (int panelHandle, int controlID , int bitmapID ,

Rect sourceRect, Rect destinationRect);

Purpose

Draws a bitmap image (or portion thereof) in the specified destination rectangle on the canvas
control.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

bitmapID integer The ID of the bitmap object containing the image. The ID
must have been obtained from NewBitmap ,
GetBitmapFromFile , GetCtrlBitmap ,
ClipboardGetBitmap ,
GetCtrlDisplayBitmap , or
GetPanelDisplayBitmap .

sourceRect Rect A Rect structure specifying the portion of the bitmap to
be drawn. The values are in terms of the pixel coordinates
of the bitmap. The origin (0, 0) is at the upper left corner
of the bitmap. Use VAL_ENTIRE_OBJECT to specify
the entire image.

destinationRect Rect A Rect structure specifying the size and location of the
area in which the bitmap image is to be drawn on the
canvas control. If sourceRect and destinationRect are
not the same size, the bitmap is stretched or shrunk to fit.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

If you want the destination rectangle to be same size as the source rectangle, you can set the
height and width in destinationRect to VAL_KEEP_SAME_SIZE.

If you want the bitmap to stretch to fit the size of the canvas, pass VAL_ENTIRE_OBJECT as
destinationRect.

Example

The following code copies a bitmap image, without any stretching or shrinking, to the canvas
control, starting 20 pixels below the top edge of the canvas, and 30 pixels to the right of left
edge of the canvas.

CanvasDrawBitmap (panelHandle, controlID, bitmapID, VAL_ENTIRE_OBJECT,
MakeRect (20,30, VAL_KEEP_SAME_SIZE, VAL_KEEP_SAME_SIZE));

See also

MakeRect

CanvasDrawLine
int status = CanvasDrawLine (int panelHandle, int controlID , Point start,

Point end);

Purpose

Draws a line between two specified points.

The line is drawn using the current value of the following attributes.

ATTR_PEN_COLOR
ATTR_PEN_MODE
ATTR_PEN_WIDTH
ATTR_PEN_STYLE (ignored in Windows when pen width is greater than 1)

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel function.

controlID integer The defined constant (located in the .uir header file) which
was assigned to the control in the User Interface Editor, or the
ID returned by the NewCtrl or DuplicateCtrl function.

start Point A Point structure specifying the location at which the line
begins.

end Point A Point structure specifying the location at which the line
ends.

Return Value

status integer Refer to Appendix A for error codes.

See also

MakePoint, CanvasDrawLineTo

CanvasDrawLineTo
int status = CanvasDrawLineTo (int panelHandle, int controlID , Point end);

Purpose

Draws a line between the current pen position and a specified end point, and sets the pen
position to the end point.

The line is drawn using the current value of the following attributes.

ATTR_PEN_COLOR
ATTR_PEN_MODE
ATTR_PEN_WIDTH
ATTR_PEN_STYLE (ignored in Windows when pen width is greater than 1)

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel function.

controlID integer The defined constant (located in the .uir header file) which
was assigned to the control in the User Interface Editor, or the
ID returned by the NewCtrl or DuplicateCtrl function.

end Point A Point structure specifying the location at which the line
ends.

Return Value

status integer Refer to Appendix A for error codes.

See also

MakePoint, CanvasGetPenPosition, CanvasSetPenPosition, CanvasDefaultPen,
CanvasDrawLine

CanvasDrawOval
int status = CanvasDrawOval (int panelHandle, int controlID , Rect rect,

int drawMode);

Purpose

Draws an oval on the canvas control within the specified rectangle.

The frame of the oval is drawn using the current value of the following attributes.

ATTR_PEN_COLOR
ATTR_PEN_MODE
ATTR_PEN_WIDTH
ATTR_PEN_STYLE (ignored in Windows when pen width is greater than 1)

The interior of the oval is drawn using the current value of the following attributes:

ATTR_PEN_FILL_COLOR
ATTR_PEN_MODE
ATTR_PEN_PATTERN

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

rect Rect A Rect structure specifying the location and size of the
rectangle within which to draw the oval.

drawMode integer Specifies whether the oval’s frame or interior (or both)
are drawn. Valid values:
VAL_DRAW_FRAME
VAL_DRAW_INTERIOR
VAL_DRAW_FRAME_AND_INTERIOR

Return Value

status integer Refer to Appendix A for error codes.

See also

MakeRect, CanvasDrawArc

CanvasDrawPoint
int status = CanvasDrawPoint (int panelHandle, int controlID , Point point);

Purpose

Draws a point on the canvas control as the specified position.

The point is drawn using the current value of the following attributes:

ATTR_PEN_COLOR
ATTR_PEN_MODE
ATTR_PEN_WIDTH

At pen widths of greater than 1, the point may appear to be non-circular.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

point Point A Point structure specifying the location at which to draw
the point.

Return Value

status integer Refer to Appendix A for error codes.

See also

MakeRect, CanvasDrawArc

CanvasDrawPoly
int status = CanvasDrawPoly (int panelHandle, int controlID , int numberOfPoints,

Point points[] , int wrap, int drawMode);

Purpose

Draws a polygon on the canvas control by connecting the specified points.

The frame of the polygon is drawn using the current value of the following attributes.

ATTR_PEN_COLOR
ATTR_PEN_MODE
ATTR_PEN_WIDTH
ATTR_PEN_STYLE (ignored in Windows when pen width is greater than 1)

The interior of the polygon is drawn using the current value of the following attributes.

ATTR_PEN_FILL_COLOR
ATTR_PEN_MODE
ATTR_PEN_PATTERN

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

numberOfPoints integer The number of vertices in the polygon.

points Point
array

An array of Point structures specifying the locations of
the vertices of the polygon.

wrap integer A nonzero value specifies that a line is drawn between
last point and first point, thereby closing the polygon
frame. This value is ignored when drawing only the
interior.

drawMode integer Specifies whether the polygon’s frame or interior (or
both) are drawn. Valid values:
VAL_DRAW_FRAME
VAL_DRAW_INTERIOR
VAL_DRAW_FRAME_AND_INTERIOR

Return Value

status integer Refer to Appendix A for error codes.

CanvasDrawRect
int status = CanvasDrawRect (int panelHandle, int controlID , Rect rect,

int drawMode);

Purpose

Draws a rectangle on the canvas control.

The frame of the rectangle is drawn using the current value of the following attributes.

ATTR_PEN_COLOR
ATTR_PEN_MODE
ATTR_PEN_WIDTH
ATTR_PEN_STYLE (ignored in Windows when pen width is greater than 1)

The interior of the rectangle is drawn using the current value of the following attributes.

ATTR_PEN_FILL_COLOR
ATTR_PEN_MODE
ATTR_PEN_PATTERN

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

rect Rect A Rect structure specifying the location and size of the
rectangle to be drawn.

drawMode integer Specifies whether the rectangle’s frame or interior (or
both) are drawn. Valid values:
VAL_DRAW_FRAME
VAL_DRAW_INTERIOR
VAL_DRAW_FRAME_AND_INTERIOR

Return Value

status integer Refer to Appendix A for error codes.

See also

MakeRect, CanvasDrawRoundedRect

CanvasDrawRoundedRect
int status = CanvasDrawRoundedRect (int panelHandle, int controlID , Rect rect,

int ovalHeight, int ovalWidth ,
int drawMode);

Purpose

Draws a rounded rectangle on the canvas control. Each corner of the rectangle is drawn as a
quadrant of an oval.

The frame of the rectangle is drawn using the current value of the following attributes.

ATTR_PEN_COLOR
ATTR_PEN_MODE
ATTR_PEN_WIDTH
ATTR_PEN_STYLE (ignored in Windows when pen width is greater than 1)

The interior of the rectangle is drawn using the current value of the following attributes.

ATTR_PEN_FILL_COLOR
ATTR_PEN_MODE
ATTR_PEN_PATTERN

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

rect Rect A Rect structure specifying the location and size of the
rectangle to be drawn.

continues

Parameters (Continued)

ovalHeight integer The vertical diameter of the oval whose quadrants are
drawn at the corners of the rounded rectangle.

ovalWidth integer The horizontal diameter of the oval whose quadrants are
drawn at the corners of the rounded rectangle.

drawMode integer Specifies whether the rectangle’s frame or interior (or
both) are drawn. Valid values:
VAL_DRAW_FRAME
VAL_DRAW_INTERIOR
VAL_DRAW_FRAME_AND_INTERIOR

Return Value

status integer Refer to Appendix A for error codes.

See also

MakeRect, CanvasDrawRect

CanvasDrawText
int status = CanvasDrawText (int panelHandle, int controlID , char text[],

char metaFont[] , Rect bounds, int alignment);

Purpose

Draws a text string within a specified rectangular area on the canvas control. You can set the
alignment of the string within the rectangle. If the string exceeds the size of the rectangle, it is
clipped.

The text is drawn using the current value of the following attribute.

ATTR_PEN_COLOR

The background rectangle is drawn using the current value of the following attributes:

ATTR_PEN_FILL_COLOR
ATTR_PEN_MODE
ATTR_PEN_PATTERN

If you do not want the background rectangle to be drawn, set the ATTR_PEN_FILL_COLOR
attribute of the canvas control to VAL_TRANSPARENT.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

text string The text string to be drawn within the rectangle.

metaFont string Specifies the text font. Must be one of the predefined
metafonts (see Table 3-5 in the LabWindows/CVI User
Interface Reference Manual) or a metafont created by a
call to CreateMetaFont .

bounds Rect A Rect structure specifying location and size of the
background rectangle within which the text is drawn.

alignment integer Determines the placement of the text string within the
background rectangle. See discussion below.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

The values in the bounds parameter are in terms of pixel coordinates, with the origin (0,0) at the
upper left corner of the canvas control.

If you want the size of the background rectangle to be adjusted automatically to the display size
of the text string, set height and width in the bounds parameter to VAL_KEEP_SAME_SIZE.

The valid values for the alignment parameters are listed in the following table.

Value Description

VAL_LOWER_LEFT Draw the string in the lower left corner of the
background rectangle.

VAL_CENTER_LEFT Start the string from the midpoint of the left edge of the
background rectangle.

VAL_UPPER_LEFT Draw the string in the upper left corner of the
background rectangle.

VAL_LOWER_CENTER Center the string just above the bottom edge of the
background rectangle.

VAL_CENTER_CENTERCenter the string in the middle of the background
rectangle.

VAL_UPPER_CENTER Center the string just below the top edge of the
background rectangle.

VAL_LOWER_RIGHT Draw the string in the lower right corner of the
background rectangle.

VAL_CENTER_RIGHT Draw the string so that it ends just at the midpoint of the
right edge of the background rectangle.

VAL_UPPER_RIGHT Draw the string in the upper right corner of the
background rectangle.

If the background rectangle specified by bounds is smaller than the text display size, the text is
clipped to the rectangle and the specified alignment is ignored. If the rectangle width is smaller
than the text display width, the text is displayed from the left. If the rectangle height is smaller
than the text display height, the text is displayed from the top.

See also

MakeRect, CanvasDrawTextAtPoint

CanvasDrawTextAtPoint
int status = CanvasDrawTextAtPoint (int panelHandle, int controlID , char text[] ,

char metaFont[] , Point anchorPoint,
int alignment);

Purpose

Draws a text string at the specified location in the canvas control. The location is in terms of an
anchor point and an alignment around the point.

The text is drawn using the current value of the following attribute.

ATTR_PEN_COLOR

The background of the text is drawn using the current value of the following attributes:

ATTR_PEN_FILL_COLOR
ATTR_PEN_MODE
ATTR_PEN_PATTERN

If you do not want the background rectangle to be drawn, set the ATTR_PEN_FILL_COLOR
attribute of the canvas control to VAL_TRANSPARENT.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

text string The text string to be drawn at the anchor point.

metaFont string Specifies the text font. Must be one of the predefined
metafonts (see Table 3-5 in the LabWindows/CVI User
Interface Reference Manual) or a metafont created by a
call to CreateMetaFont .

anchorPoint Point A Point structure specifying location of the point at which
the text is drawn.

alignment integer Determines the placement of the text string in relation to
the anchor point. See discussion below.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

Each alignment value refers to a point on the rectangle that implicitly encloses the text string.
The text string is placed so that the point indicated by the alignment parameter is at the location
specified the anchorPoint parameter. The valid values for the alignment parameter are listed in
the following table.

Value Description

VAL_LOWER_LEFT Draw the string so that lower left corner of its enclosing
rectangle is at the location specified by anchorPoint.

VAL_CENTER_LEFT Draw the string so that midpoint of the left edge of its
enclosing rectangle is at the location specified by
anchorPoint.

VAL_UPPER_LEFT Draw the string so that upper left corner of its enclosing
rectangle is at the location specified by anchorPoint.

VAL_LOWER_CENTER Draw the string so that midpoint of the bottom edge of
its enclosing rectangle is at the location specified by
anchorPoint.

VAL_CENTER_CENTER Draw the string so that center of its enclosing rectangle
is at the location specified by anchorPoint.

VAL_UPPER_CENTER Draw the string so that midpoint of the top edge of its
enclosing rectangle is at the location specified by
anchorPoint.

VAL_LOWER_RIGHT Draw the string so that lower right corner of its
enclosing rectangle is at the location specified by
anchorPoint.

VAL_CENTER_RIGHT Draw the string so that midpoint of the right edge of its
enclosing rectangle is at the location specified by
anchorPoint.

VAL_UPPER_RIGHT Draw the string so that upper right corner of its
enclosing rectangle is at the location specified by
anchorPoint.

See also

MakeRect, CanvasDrawText

CanvasEndBatchDraw
int nestingDepth = CanvasEndBatchDraw (int panelHandle, int controlID);

Purpose

Ends the batch drawing started with CanvasStartBatchDraw .

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

Return Value

nestingDepth integer The number of calls to CanvasStartBatchDraw that
have not been matched by calls to
CanvasEndBatchDraw (including this call). A negative
value indicates that an error occurred. Refer to Appendix A
for error codes.

See also

CanvasStartBatchDraw

CanvasGetClipRect
int status = CanvasGetClipRect (int panelHandle, int controlID , Rect * clipRect);

Purpose

Obtains the current clipping rectangle for the canvas control. All drawing operations are
restricted to the area in the clipping rectangle. Any drawing outside the clipping rectangle is not
shown. Exception: CanvasClear is not restricted to the clipping rectangle.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

Output clipRect Rect The Rect structure into which the location and size of the
clipping rectangle are stored. If clipping is disabled (the
default state), the height and width values in the structure
are set to zero.

Return Value

status integer Refer to Appendix A for error codes.

See Also

CanvasSetClipRect

CanvasGetPenPosition
int status = CanvasGetPenPosition (int panelHandle, int controlID , Point * point);

Purpose

Obtains the current position of the canvas pen.

Note: CanvasDrawLineTo is the only canvas drawing function that uses the pen position.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

Output point Point The Point structure into which the current position of the
canvas pen is stored.

Return Value

status integer Refer to Appendix A for error codes.

See Also

CanvasSetPenPosition, CanvasDefaultPen, CanvasDrawLineTo

CanvasGetPixel
int status = CanvasGetPixel (int panelHandle, int controlID , Point pixelPoint,

int * pixelColor);

Purpose

Obtains the color of a single pixel on a canvas control.

Note: The canvas control maintains an internal bitmap reflecting all of the drawing
operations (except for drawing operations made while the ATTR_DRAW_POLICY
attribute is set to VAL_DIRECT_TO_SCREEN). There are times during which the
internal bitmap contains the result of recent drawing operations that have not yet been
reflected on the screen. This function obtains the pixel colors from the internal bitmap,
not from the screen.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

pixelPoint Point A Point structure indicating the location of a pixel. The
location is in terms of unscaled pixel coordinates. The
origin (0,0) is the upper left corner of the canvas control.

Output pixelColor integer The RGB color value of the pixel at the specified point.

Return Value

status integer Refer to Appendix A for error codes.

See also

MakePoint, CanvasGetPixels

CanvasGetPixels
int status = CanvasGetPixels (int panelHandle, int controlID , Rect rect,

int pixelColors[]);

Purpose

Obtains the colors of the pixels in the specified rectangular area of a canvas control.

Note: The canvas control maintains an internal bitmap reflecting all of the drawing
operations (except for drawing operations made while the ATTR_DRAW_POLICY
attribute is set to VAL_DIRECT_TO_SCREEN). There are times during which the
internal bitmap contains the result of recent drawing operations that have not yet been
reflected on the screen. This function obtains the pixel colors from the internal bitmap,
not from the screen.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

rect Rect The Rect structure specifying the location and size of the
rectangular area from which to obtain the pixel colors.

The location and size are expressed in terms of unscaled
pixel coordinates. The origin (0,0) is the upper left corner
of the canvas control. Use VAL_ENTIRE_OBJECT to
specify the entire canvas.

Output pixelColors integer
array

An array of RGB color values of the pixels in the specified
rectangle. See discussion below.

Parameter Discussion

The total number of elements in the pixelColors array should be equal to rect.height *
rect.width. The pixel color values are stored in row-major order. For example, if rect has the
following values,

rect.top 50

rect.left 60

rect.height 20

rect.width 15

then the color of pixel {x = 65, y = 58} is stored in pixel array at the following index.

(y - rect.top) * rect.width + (x - rect.left)

= (58-50)*15 + (65-60)

= 125

When using a rect.width of VAL_TO_EDGE, substitute the following for rect.width in the
above formula.

(total width of canvas) - rect.left

Return Value

status integer Refer to Appendix A for error codes.

See also

MakePoint, CanvasGetPixel

CanvasInvertRect
int status = CanvasInvertRect (int panelHandle, int controlID , Rect rect);

Purpose

Inverts the colors in the specified rectangular area of a canvas control. The colors that result
from the inversion are dependent on the operating system. If you invert the same rectangle twice,
you are guaranteed to get the original colors back.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

rect Rect A Rect structure which specifies the location and size of
the rectangular area in which to invert the colors. Use
VAL_ENTIRE_OBJECT to specify the entire canvas.

Return Value

status integer Refer to Appendix A for error codes.

See also

MakeRect

CanvasScroll
int status = CanvasScroll (int panelHandle, int controlID , Rect scrollRect,

int scrollAmountInXDirection , int scrollAmountInYDirection);

Purpose

Scrolls the contents of the specified rectangular area of a canvas control. The area that is
exposed by the scrolling is filled using the current value of the ATTR_PEN_FILL_COLOR
attribute. The contents of the canvas outside the specified rectangular area is not affected by the
scrolling.

Parameters

Input panelHandle integer The specifier for a particular panel that is
contained in memory. This handle will have
been returned by the LoadPanel ,
NewPanel , or DuplicatePanel function.

controlID integer The defined constant (located in the .uir
header file) which was assigned to the control
in the User Interface Editor, or the ID returned
by the NewCtrl or DuplicateCtrl
function.

scrollRect Rect A Rect structure which specifies the location
and size of the rectangular area to scroll. Use
VAL_ENTIRE_OBJECT to specify the entire
canvas.

scrollAmountInXDirection integer The amount to scroll horizontally.

scrollAmountInYDirection integer The amount to scroll vertically.

Parameter Discussion

A positive value for scrollAmountInXDirection moves the contents of the rectangle to the
right. An area on the left side of the rectangle is thereby exposed. It is filled with the current
value of the ATTR_PEN_FILL_COLOR attribute.

A negative value for scrollAmountInXDirection moves the contents of the rectangle to the left.
An area on the right side of the rectangle is thereby exposed. It is filled with the current value of
the ATTR_PEN_FILL_COLOR attribute.

A positive value for scrollAmountInYDirection moves the contents of the rectangle down. An
area at the top of the rectangle is thereby exposed. It is filled with the current value of the
ATTR_PEN_FILL_COLOR attribute.

A negative value for scrollAmountInYDirection moves the contents of the rectangle the up. An
area at the bottom of the rectangle is thereby exposed. It is filled with the current value of the
ATTR_PEN_FILL_COLOR attribute.

See Also

MakeRect

CanvasSetClipRect
int status = CanvasSetClipRect (int panelHandle, int controlID , Rect clipRect);

Purpose

Sets the clipping rectangle for the canvas control. All drawing operations are restricted to the
area in the clipping rectangle. Any drawing outside the clipping rectangle is not shown.
Exception: CanvasClear is not restricted to the clipping rectangle.

Changing the clipping rectangle does not affect current contents of the canvas.

In the initial state for a canvas control, clipping is disabled.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

clipRect Rect A Rect structure specifying into the location and size of
the clipping rectangle. To disable clipping, set the height
and width of clipRect to zero, or use
VAL_EMPTY_RECT.

Return Value

status integer Refer to Appendix A for error codes.

See Also

CanvasGetClipRect

CanvasSetPenPosition
int status = CanvasSetPenPosition (int panelHandle, int controlID , Point point);

Purpose

Sets the position of the canvas pen.

Note: CanvasDrawLineTo is the only canvas drawing function that uses the pen position.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

point Point A Point structure specifying the new position of the canvas
pen.

Return Value

status integer Refer to Appendix A for error codes.

See Also

CanvasGetPenPosition, CanvasDefaultPen, CanvasDrawLineTo

CanvasStartBatchDraw
int nestingDepth = CanvasStartBatchDraw (int panelHandle, int controlID);

Purpose

This function can be used to increase the drawing performance of the canvas control. In general,
it should be used whenever you want to make two or more consecutive calls to canvas drawing
functions. Each call to CanvasStartBatchDraw should be matched with a call to
CanvasEndBatchDraw .

Before drawing operations can be performed, certain operating system functions must be
invoked to prepare for drawing on the particular canvas. Without batch drawing, these system
functions must be called for each canvas drawing operation. With batch drawing, the system
functions are called only once for all of the drawing operations between
CanvasStartBatchDraw and the matching CanvasEndBatchDraw .

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

Return Value

nestingDepth integer The number of calls to CanvasStartBatchDraw
(including this call) that have not been matched by calls to
CanvasEndBatchDraw . A negative value indicates that
an error occurred. Refer to Appendix A for error codes.

Using This Function

The following code shows an example of how you would incorporate a sequence of drawing
operations on the same canvas control into one batch.

CanvasStartBatchDraw (panelHandle, controlID);
CanvasDrawLine (panelHandle, controlID, point1, point2);
CanvasDrawLine (panelHandle, controlID, point3, point4);
CanvasDrawRect (panelHandle, controlID, rect5);
CanvasEndBatchDraw (panelHandle, controlID);

During a batch draw, you may call drawing operations on other canvas controls or call other
User Interface Library functions that perform drawing operations or process events. This has the
effect of implicitly ending the batch. The next time you call a drawing function on the same
canvas, the batch is implicitly restarted.

You may nest calls to CanvasStartBatchDraw .

Failure to properly match CanvasStartBatchDraw and CanvasEndBatchDraw calls can
negate the potential performance improvements but does not cause any other ill effects.

Note: If the ATTR_DRAW_POLICY attribute for the canvas control is set to
VAL_UPDATE_IMMEDIATELY, no update to the screen occurs until the batch is
ended. Also, changing values of the ATTR_DRAW_POLICY and
ATTR_OVERLAP_POLICY attributes during a batch draw has no effect until after the
batch is ended.

See also

CanvasEndBatchDraw

CanvasUpdate
int status = CanvasUpdate (int panelHandle, int controlID , Rect updateArea);

Purpose

Immediately updates on the screen the contents of the canvas control within the specified
rectangular area.

The canvas control maintains an internal bitmap reflecting all of the drawing operations (except
for drawing operations made while the ATTR_DRAW_POLICY attribute is set to
VAL_DIRECT_TO_SCREEN). Maintaining the internal bitmap ensures that the canvas is
redrawn correctly when it is exposed.

This function copies the content of the specified area in the internal bitmap to the canvas control.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

updateArea Rect A Rect structure specifying the location and size of the
rectangular to be updated from the internal bitmap. Use
VAL_ENTIRE_OBJECT to specify the entire canvas
control.

Return Value

status integer Refer to Appendix A for error codes.

See also

MakeRect

ClearAxisItems
int status = ClearAxisItems (int panelHandle, int controlID , int axis);

Purpose

This function deletes all string/value pairs from the list of label strings for a graph or strip chart
axis.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

axis integer Specifies the axis from which to delete all of the
string/value pair(s). Valid values:
VAL_XAXIS
VAL_LEFT_YAXIS
VAL_RIGHT_YAXIS (graphs only)

Return Value

status integer Refer to Appendix A for error codes.

See Also

InsertAxisItem, ReplaceAxisItem, DeleteAxisItem, GetNumAxisItems

ClipboardGetBitmap
int status = ClipboardGetBitmap (int * bitmapID , int * available);

Purpose

Determines whether or not a bitmap image is available on the system clipboard and optionally
retrieves a copy of the bitmap. The bitmap ID can then be passed to any function that accepts a
bitmap, such as CanvasDrawBitmap .

You can discard the bitmap by passing its ID to DiscardBitmap .

Parameters

Output bitmapID integer An ID that serves as a handle to the bitmap copied from
the clipboard. It is set to NULL if there is no bitmap on the
clipboard. If you not want a copy of the bitmap, pass
NULL.

available integer Is set to 1 if a bitmap is available on the system clipboard,
0 otherwise. You may pass NULL for this parameter.

Return Value

status integer Refer to Appendix A for error codes.

See Also

ClipboardPutBitmap, ClipboardGetText, GetBitmapData, SetCtrlBitmap,
PlotBitmap, CanvasDrawBitmap, DiscardBitmap.

ClipboardGetText
int status = ClipboardGetText (char ** text, int * available);

Purpose

Determines whether or not a text string is available on the system clipboard and optionally
retrieves a copy of the text.

When the copy of the text is no longer needed, you should free it by calling the free function.

Parameters

Output text string A pointer to the nul-terminated string copied from the
clipboard. It is set to NULL if there is no text on the
clipboard. If you not want a copy of the text, pass NULL.

available integer Is set to 1 if a text string is available on the system
clipboard, 0 otherwise. You may pass NULL for this
parameter.

Return Value

status integer Refer to Appendix A for error codes.

See Also

ClipboardPutText, ClipboardGetBitmap.

ClipboardPutBitmap
int status = ClipboardPutBitmap (int bitmapID);

Purpose

Copies a bitmap image onto the system clipboard.

Parameter

Input bitmapID integer The ID of the bitmap object containing the image. The ID
must have been obtained from NewBitmap ,
GetBitmapFromFile , GetCtrlBitmap ,
ClipboardGetBitmap , GetCtrlDisplayBitmap ,
or GetPanelDisplayBitmap .

Return Value

status integer Refer to Appendix A for error codes.

See Also

ClipboardGetBitmap, ClipboardPutText, NewBitmap, GetBitmapFromFile,
GetCtrlBitmap, GetCtrlDisplayBitmap, GetPanelDisplayBitmap,
ClipboardGetBitmap.

ClipboardPutText
int status = ClipboardPutText (char text[]);

Purpose

Copies a text string onto the system clipboard.

Parameter

Input text string A nul-terminated string.

Return Value

status integer Refer to Appendix A for error codes.

See Also

ClipboardGetText, ClipboardPutBitmap

DeleteAxisItem
int status = DeleteAxisItem (int panelHandle, int controlID , int axis,

int itemIndex, int numberOfItems);

Purpose

Deletes one or more string/value pairs from the list of label strings for a graph or strip chart axis.
These strings appear in place of the numerical labels. They appear at the location of their
associated values on the graph or strip chart.

To see string labels on an X axis, you must set the ATTR_XUSE_LABEL_STRINGS attribute to
TRUE. To see string labels on a Y axis, you must set the ATTR_YUSE_LABEL_STRINGS
attribute to TRUE.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

axis integer Specifies the axis from which to delete the selected
string/value pair(s). Valid values:
VAL_XAXIS
VAL_LEFT_YAXIS
VAL_RIGHT_YAXIS (graphs only)

itemIndex integer The zero-based index of the first item to be deleted.

numberOfItems string The number of items to delete.

Return Value

status integer Refer to Appendix A for error codes.

See Also

InsertAxisItem, ReplaceAxisItem, ClearAxisItems, GetNumAxisItems

DiscardBitmap
int status = DiscardBitmap (int bitmapID);

Purpose

Discards a bitmap object.

Parameter

Input bitmapID integer The ID of the bitmap object. The ID must have been
obtained from NewBitmap , GetBitmapFromFile ,
GetCtrlBitmap , ClipboardGetBitmap ,
GetCtrlDisplayBitmap , or
GetPanelDisplayBitmap .

Return Value

status integer Refer to Appendix A for error codes.

See Also

NewBitmap, GetBitmapFromFile, GetCtrlBitmap, GetCtrlDisplayBitmap,
GetPanelDisplayBitmap, ClipboardGetBitmap.

Get3dBorderColors
int status = Get3dBorderColors (int baseColor, int * highlightColor ,

int * lightColor , int * shadowColor,
int * darkShadowColor);

Purpose

Takes an RGB value for the base color of an object and returns the RGB values for colors that
can be used to make the object look 3-dimensional. The colors returned are similar to the colors
used in Windows 95 for drawing 3-dimensional objects.

Parameters

Input baseColor integer The RGB value for the color of an object.

Output highlightColor integer The RGB value for the color used to indicate the
edges of the object that are in the most direct light.

lightColor integer The RGB value for the color used to indicate the
transition between the highlight color and the base
color of the object.

shadowColor integer The RGB value for the color used to indicate the
edges of the object that are angled away from the
light.

darkShadowColor integer The RGB value for the color used to indicate the
edges of the object that are angled farthest away from
the light.

Parameter Discussion

You may pass NULL for any of the output parameters.

Currently, the lightColor is always the same as the baseColor, as is the case in Windows 95.

Currently, the darkShadowColor this is always black, as is the case in Windows 95.

GetAxisItem
int status = GetAxisItem (int panelHandle, int controlID , int axis,

int itemIndex, char itemLabel[] , double * itemValue);

Purpose

This function retrieves the string/value pair at the specified index in the list of label strings for a
graph or strip chart axis.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

axis integer Specifies the axis from which to retrieve the selected
string/value pair. Valid values:
VAL_XAXIS
VAL_LEFT_YAXIS
VAL_RIGHT_YAXIS (graphs only)

itemIndex integer A zero-based index into the list of label strings.

Output itemLabel string Buffer in which the label string is returned.

itemValue double The value associated with the label string.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

itemLabel must be large enough to hold the label string, including the terminating NUL byte.
You can use GetAxisItemLabelLength to determine the length of the label string.

You may pass NULL for either of the output parameters.

See Also

InsertAxisItem, GetNumAxisItems, GetAxisItemLabelLength

GetAxisItemLabelLength
int status = GetAxisItemLabelLength (int panelHandle, int controlID , int axis,

int itemIndex, int * length);

Purpose

This function obtains the number of characters in a label string for a graph or strip chart axis.
The label string is specified by its index in the list of string/value pairs for that axis.

The length returned does not include the terminating NUL byte.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

axis integer Specifies the axis for which to return the length of the
selected label string. Valid values:
VAL_XAXIS
VAL_LEFT_YAXIS
VAL_RIGHT_YAXIS (graphs only)

itemIndex integer A zero-based index into the list of label strings.

Output length string The length of the selected label string. Excludes the
terminating NUL byte.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

itemLabel must be large enough to hold the label string, including the terminating NUL byte.
You can use GetAxisItemLabelLength to determine the length of the label string.

You may pass NULL for either of the output parameters.

See Also

InsertAxisItem, GetNumAxisItems, GetAxisItem.

GetAxisScalingMode
int status = GetAxisScalingMode (int panelHandle, int controlID , int axis,

int * axisScaling, double * min, double * max);

Purpose

Obtains the scaling mode and the range of any graph axis or the Y axis of a strip chart.

This function is not valid for the X axis of a strip chart. To obtain the X offset and
X increment for a strip chart, use the GetCtrlAttribute function with the
ATTR_XAXIS_OFFSET and ATTR_XAXIS_GAIN attributes.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

axis integer Specifies for which axis to obtain the mode and range.
Valid values:
VAL_XAXIS (graphs only)
VAL_LEFT_YAXIS (graphs and strip charts)
VAL_RIGHT_YAXIS (graphs only)

Output axisScaling integer The scaling mode used for the axis. See table below.

min double The current minimum value on the axis.

max double The current maximum value on the axis.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

axisScaling is one of the following values.

Valid Value Description

VAL_MANUAL The axis is set to manual scaling, and its range is
defined by min and max.

VAL_AUTOSCALE The axis is set to auto scaling. min and max are not
used. Auto scaling is not valid for strip charts.

VAL_LOCK The axis is set to manual scaling using the current
(possibly auto scaled) minimum and maximum
values on the axis. VAL_LOCK is not valid for strip
charts.

If you call SetAxisScalingMode with axisScaling set to VAL_AUTOSCALE, and you then
call SetAxisScalingMode with axisScaling set to VAL_LOCK, GetAxisScalingMode
returns axisScaling as VAL_MANUAL.

max always exceeds min.

You may pass NULL for any of the output parameters.

See Also

SetAxisScalingMode

GetBitmapData
int status = GetBitmapData (int bitmapID , int * bytesPerRow, int * pixelDepth,

int * width , int * height, int colorTable[] ,
unsigned char bits[] , unsigned char mask[]);

Purpose

Obtains the bit values that define the image associated with a bitmap. Before calling
GetBitmapData , you must do one of the following.

Call GetBitmapInfo to get the size of the buffers needed, and then allocate the buffers, or

Call AllocBitmapData .

Parameters

Input bitmapID integer The ID of the bitmap object containing the image.
The ID must have been obtained from
NewBitmap , GetBitmapFromFile ,
GetCtrlBitmap , ClipboardGetBitmap ,
GetCtrlDisplayBitmap , or
GetPanelDisplayBitmap .

Output bytesPerRow integer The number of bytes on each scan line of the
image.

pixelDepth integer The number of bits per pixel.

width integer The width of the image, in pixels.

height integer The height of the image, in pixels.

colorTable integer array An array of RGB color values, or NULL if
pixelDepth is greater than 8.

bits unsigned char
array

An array of bits that determine the colors to be
displayed on each pixel in the image.

mask unsigned char
array

An array containing one bit per pixel in the image.
Each bit specifies whether the pixel is actually
drawn. May be NULL.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

If there is no image, the width and height parameters are set to -1. If the bitmap originated from
a Windows metafile (.WMF), the size of the bitmap obtained by this function is the size stored in
the original Windows metafile.

The pixelDepth parameter is set to 1, 2, 8, or 24.

The number of bits in the bits array for each pixel is equal to the pixelDepth value. If
pixelDepth is 8 or less, the bits array is filled with indices into the colorTable array, and the
number of entries in the colorTable array is 2 raised to the power of the pixelDepth parameter.
If pixelDepth is greater than 8, the colorTable array is not used, and the bits array contains the
actual RGB values. For a pixelDepth of 24, each pixel is represented by a 3-byte RGB value of
the form 0xRRGGBB, where RR, GG, and BB represent the red, green and blue intensity of the
color. The RR byte is always at the lowest memory address of the three bytes.

The first pixel in the bits array is at the top, left corner of the image. The pixels in the array are
in row-major order.

If GetBitmapInfo sets the colorSize parameter to zero, the colorTable array is not filled in.

In the mask array, a bit value of 1 indicates that the pixel is drawn. 0 indicates that the pixel is
not drawn. Exception: If an image has a pixelDepth of 1, pixels with a bits value of 1
(foreground pixels) are always drawn and the mask affects only the pixels with a bitmap of 0
(background pixels). Each row of the mask is padded to the nearest even-byte boundary. For
example, if the width of the image is 21 pixels, then there are 32 bits (in other words, 4 bytes) of
data in each row of the mask.

A mask is useful for achieving transparency.

If GetBitmapInfo sets the maskSize parameter to zero, the mask array is not filled in.

Note: Only images that are 32 pixels wide and 32 pixels high can use a mask.

You may pass NULL for any of the output parameters.

See Also

NewBitmap, GetBitmapFromFile, GetCtrlBitmap, GetCtrlDisplayBitmap,
GetPanelDisplayBitmap, ClipboardGetBitmap, GetBitmapInfo, AllocBitmapData.

GetBitmapFromFile
int status = GetBitmapFromFile (char fileName[] , int * bitmapID);

Purpose

Reads a bitmap image from a file and creates a bitmap object. The bitmap ID can then be passed
to any function that accepts a bitmap, such as CanvasDrawBitmap or
ClipboardPutBitmap .

You can discard the bitmap object by passing its ID to DiscardBitmap .

You can use the following image types:

PCX: Windows and SPARCstation
BMP, DIB, RLE, ICO, WMF: Windows only
XWD: SPARCstation only

Parameters

Input fileName string The pathname of the file which contains the image. If the
name is a simple filename, the file is loaded from the
project. If it is not found in the project, the file is loaded
from the directory containing the project.

Output bitmapID integer An ID that serves as a handle to the bitmap object.

Return Value

status integer Refer to Appendix A for error codes.

See Also

ClipboardPutBitmap, GetBitmapData, SetCtrlBitmap, PlotBitmap,
CanvasDrawBitmap, DiscardBitmap.

GetBitmapInfo
int status = GetBitmapInfo (int bitmapID , int * colorSize, int * bitsSize,

int * maskSize);

Purpose

Obtains size information about the image associated with a bitmap. This information can then be
used in allocating the buffers to be passed to the GetBitmapData function.

As an alternative to this function, you can call AllocBitmapData , which allocates the
buffers for you.

Parameters

Input bitmapID integer The ID of the bitmap object containing the image. The ID
must have been obtained from NewBitmap ,
GetBitmapFromFile , GetCtrlBitmap ,
ClipboardGetBitmap , GetCtrlDisplayBitmap ,
or GetPanelDisplayBitmap .

Output colorSize integer The number of bytes in the image color table (0 if the pixel
depth of the image is greater than 8).

bitsSize integer The number of bytes in the image bitmap.

maskSize integer The number of bytes in the image mask (0 if there is no
mask).

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

You may pass NULL for any of the output parameters.

See Also

GetBitmapData, AllocBitmapData.

GetCtrlBitmap
int status = GetCtrlBitmap (int panelHandle, int controlID , int imageID,

int * bitmapID);

Purpose

Obtains a bitmap image from a control and stores it in a bitmap object. The bitmap ID can then
be passed to any function that accepts a bitmap, such as CanvasDrawBitmap or
ClipboardPutBitmap .

The following control types can contain images:

picture controls
picture rings
picture buttons
graph controls
canvas controls

You can use this function on images set using DisplayImageFile , InsertListItem ,
ReplaceListItem , PlotBitmap , or SetImageBits , or SetCtrlAttribute with
the ATTR_IMAGE_FILE attribute.

You can discard the bitmap object by passing its ID to DiscardBitmap .

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

imageID integer For picture rings, the zero-based index of an image in the
ring. For graphs, this argument is the plotHandle returned
from PlotBitmap . For picture controls, picture buttons,
and canvas controls, this argument is ignored.

Output bitmapID integer An ID that serves as a handle to the bitmap object.

Return Value

status integer Refer to Appendix A for error codes.

See Also

ClipboardPutBitmap, GetBitmapData, SetCtrlBitmap, PlotBitmap,
CanvasDrawBitmap, DiscardBitmap.

GetCtrlDisplayBitmap
int status = GetCtrlDisplayBitmap (int panelHandle, int controlID ,

int includeLabel, int * bitmapID);

Purpose

This function creates a bitmap object containing a "snapshot" image of the current appearance of
the specified control. The bitmap ID can then be passed to any function that accepts a bitmap,
such as CanvasDrawBitmap or ClipboardPutBitmap .

For example, you can paste a picture of a control onto the system clipboard by calling
GetCtrlDisplayBitmap and then passing the bitmap ID to ClipboardPutBitmap .

You can discard the bitmap object by passing the ID to the DiscardBitmap function.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

includeLabel integer If nonzero, the control label is included in the image.

Output bitmapID integer An ID that serves as a handle to the bitmap object.

Return Value

status integer Refer to Appendix A for error codes.

See Also

ClipboardPutBitmap, GetBitmapData, GetPanelDisplayBitmap, SetCtrlBitmap,
PlotBitmap, CanvasDrawBitmap, DiscardBitmap.

GetNumAxisItems
int status = GetNumAxisItems (int panelHandle, int controlID , int axis,

int * count);

Purpose

Returns the number of items in the list of label strings for a graph or strip chart axis.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

axis integer Specifies the axis for which to return the count of
string/value pairs. Valid values:
VAL_XAXIS
VAL_LEFT_YAXIS
VAL_RIGHT_YAXIS (graphs only)

Output count integer The number of string/value pairs for the axis.

Return Value

status integer Refer to Appendix A for error codes.

See Also

InsertAxisItem, GetAxisItem, GetAxisItemLabelLength

GetPanelDisplayBitmap
int status = GetPanelDisplayBitmap (int panelHandle, int scope, Rect area,

int * bitmapID);

Purpose

This function creates a bitmap object containing a "snapshot" image of the current appearance of
the specified panel. The bitmap ID can then be passed any function that accepts a bitmap, such
as CanvasDrawBitmap or ClipboardPutBitmap .

For example, you can paste a picture of a panel onto the system clipboard by calling
GetPanelDisplayBitmap and then passing the bitmap ID to ClipboardPutBitmap .

You can discard the bitmap object by passing the ID to the DiscardBitmap function.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

scope integer Determines which portions of the specified panel are to be
copied to the bitmap. See table of valid values below.

area Rect Use this parameter to restrict the area of the panel copied
into the bitmap. The rectangle coordinates are relative to
the upper-left corner of the panel (directly below the title
bar) before the panel is scrolled. Use
VAL_ENTIRE_OBJECT if you do not want to restrict the
area copied.

Output bitmapID integer An ID that serves as a handle to the bitmap object.

Return Value

status integer Refer to Appendix A for error codes.

Scope

Valid Values Description

VAL_VISIBLE_AREA The visible area of the panel is copied to the
bitmap, including the frame, menu bar, and scroll
bars.

VAL_FULL_PANEL The entire contents of the panel are copied to the
bitmap, excluding the frame, menu bar, and scroll
bars. This includes contents that might currently be
scrolled off the visible area.

See Also

ClipboardPutBitmap, GetBitmapData, GetCtrlDisplayBitmap, SetCtrlBitmap,
PlotBitmap, CanvasDrawBitmap, DiscardBitmap.

GetSystemAttribute
int status = GetSystemAttribute (int systemAttribute, void * attributeValue);

Purpose

Returns the value of a particular system attribute.

Parameters

Input systemAttribute integer ATTR_ALLOW_UNSAFE_TIMER_EVENTS

Output attributeValue void * The value of the specified attribute. See Table 3-7 for
values associated with this attribute.

Return Value

status integer Refer to Appendix A for error codes.

InsertAxisItem
int status = InsertAxisItem (int panelHandle, int controlID , int axis,

int itemIndex, char itemLabel[],double itemValue);

Purpose

This function inserts a string/value pair into the list of label strings associated with a graph or
strip chart axis. These strings appear instead of the numerical labels. They appear at the location
of their associated values on the graph or strip chart.

To see string labels on an X axis, you must set the ATTR_XUSE_LABEL_STRINGS attribute to
TRUE. To see string labels on a Y axis, you must set the ATTR_YUSE_LABEL_STRINGS
attribute to TRUE.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

axis integer Specifies the axis for which to insert the string/value pair.
Valid values:
VAL_XAXIS
VAL_LEFT_YAXIS
VAL_RIGHT_YAXIS (graphs only)

itemIndex integer The zero-based index into the list at which the item is to be
stored. Pass -1 to store the item at the end of the list. See
discussion below.

itemLabel string The label string being inserted. The label appears on the
axis at the location of the associated value. A maximum of
31 characters are shown.

itemValue double The value to be associated with the label string being
inserted. The label string appears on the axis at the location
of the value.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

itemIndex does not determine the order in which the labels appear on the axis. It merely
represents the order in which LabWindows/CVI stores the string/value pairs. You can use the
index as a handle for replacing or deleting label/value pairs.

If you pass -1 for itemIndex, the string/value pair is stored at the end of the list.

See Also

ReplaceAxisItem, DeleteAxisItem, ClearAxisItems, GetNumAxisItems

LoadMenuBarEx
int menuBarHandle = LoadMenuBarEx (int destinationPanelHandle, filename[] ,

int menuBarResourceID,
void * callingModuleHandle);

Purpose

LoadMenuBarEx loads a menu bar into memory from a User Interface Resource (*.uir) that
was file created in the User Interface Editor. LoadMenuBarEx is similar to LoadMenuBar ,
except that, when you use LoadMenuBarEx on Windows 95 and NT, the callback functions
you reference in your .uir file can be defined in the DLL that contains the call to
LoadMenuBarEx . On platforms other than Windows 95 and NT, LoadMenuBarEx works
exactly like LoadMenuBar .

Parameters

Input destinationPanelHandle integer The handle of the panel on which the menu bar is
to reside.

filename string The name of the User Interface Resource File that
contains the menu bar.

panelResourceID integer The defined constant assigned to the menu bar in
the User Interface Editor.

callingModuleHandle void
pointer

Usually, the module handle of the calling DLL.
You can use __CVIUserHInst. Zero
indicates the project or executable.

Return Value

menuBarHandle integer The value you can use in subsequent function
calls to specify this menu bar. Negative values
indicate that an error occurred. Refer to Appendix
A for error codes.

Using this Function

Refer to the function help for LoadMenuBar for detailed information on that function. When
you call LoadMenuBar , the User Interface Library attempts to find the callback functions
referenced in the .uir file. It searches the symbols defined in the project or in object, library,
or DLL import library modules that have been loaded using LoadExternalModule . It does
not search symbols that are defined in a DLL but not exported in the DLL import library.

You may want a DLL to load a menu bar and link to callback functions defined in (but not
exported from) the DLL. You can do this by calling LoadMenuBarEx . You must specify the
module handle of the DLL in the callingModuleHandle parameter. You can do this by using the
pre-defined variable __CVIUserHInst . (If you pass zero for the callingModuleHandle, the
function behaves identically to LoadMenuBar .)

LoadMenuBarEx first searches the DLL symbols to find the callback functions referenced in
the .uir . If there are any callback functions that it cannot find, it then searches for them in the
same manner as LoadMenuBar .

LoadMenuBarEx expects the DLL to contain a table of the callback functions referenced by
the .uir files loaded by the DLL. If you create the DLL in LabWindows/CVI, the table is
included automatically. If you create the DLL using an external compiler, you must arrange for
this table to be included in the DLL. You can do this by using the External Compiler Support
command in the Build menu of the Project window. You must have a LabWindows/CVI project
that lists all of the .uir files loaded by the DLL. In the External Compiler Support dialog box,
specify the name of an object file to contain the table of callback function names. Then click on
the Create button to create the object file. You must include the object file in the external
compiler project you use to create the DLL.

The External Compiler Support information is contained in the LabWindows/CVI project file. If
that project file is loaded and you modify and save any of the .uir files, LabWindows/CVI
automatically regenerates the object file.

See also

LoadMenuBar, LoadPanelEx

LoadPanelEx
int panelHandle = LoadPanelEx (int parentPanelHandle, char filename[] ,

int panelResourceID, void * callingModuleHandle);

Purpose

LoadPanelEx loads a panel into memory from a User Interface Resource (.uir) file created
in the User Interface Editor. LoadMenuBarEx is similar to LoadMenuBar , except that, when
you use LoadMenuBarEx your program on Windows 95 and NT, the callback functions you
reference in your .uir file can be defined in the DLL that contains the call to LoadPanelEx .
On platforms other than Windows 95 and NT, LoadPanelEx works exactly like LoadPanel .

Parameters

Input parentPanelHandle integer The handle of the panel into which the panel is
loaded as a child panel . Pass 0 to load the panel
as a top-level window.

filename string The name of the User Interface Resource File
that contains the panel.

panelResourceID integer The defined constant assigned to the panel in the
User Interface Editor.

callingModuleHandle void
pointer

Usually, the module handle of the calling DLL.
You can use __CVIUserHInst. Zero
indicates the project or executable.

Return Value

panelHandle integer The value you can use in subsequent function
calls to specify this panel. Negative values
indicate that an error occurred. Refer to
Appendix A for error codes.

Using this Function

Refer to the function help for LoadPanel for detailed information on that function.

When you call LoadPanel, the User Interface Library attempts to find the callback functions
referenced in the .uir file. It searches the symbols defined in the project or in object, library,
or DLL import library modules that have been loaded using LoadExternalModule . It does
not search symbols that are defined in a DLL but not exported in the DLL import library.

You may want a DLL to load a panel and link to callback functions defined in (but not exported
from) the DLL. You can do this by calling LoadPanelEx . You must specify the module

handle of the DLL in the callingModuleHandle parameter. You can do this by using the pre-
defined variable __CVIUserHInst . (If you pass zero for the callingModuleHandle, the
function behaves identically to LoadPanel .)

LoadPanelEx first searches the DLL symbols to find the callback functions referenced in the
.uir . If there are any callback functions that it cannot find, it then searches for them in the
same manner as LoadPanel .

LoadPanelEx expects the DLL to contain a table of the callback functions referenced by the
.uir files loaded by the DLL. If you create the DLL in LabWindows/CVI, the table is included
automatically. If you create the DLL using an external compiler, you must arrange for this table
to be included in the DLL. You can do this by using the External Compiler Support command
in the Build menu of the Project window. You must have a LabWindows/CVI project that lists
all of the .uir files loaded by the DLL. In the External Compiler Support dialog box, specify
the name of an object file to contain the table of callback function names. Then click on the
Create button to create the object file. You must include the object file in the external compiler
project you use to create the DLL.

The External Compiler Support information is contained in the LabWindows/CVI project file. If
that project file is loaded and you modify and save any of the .uir files, LabWindows/CVI
automatically regenerates the object file.

See also

LoadPanel, LoadMenuBarEx

MakePoint
Point point = MakePoint (int xCoordinate, int yCoordinate);

Purpose

Returns a Point structure with the specified values. The Point structure defines the location of
a point.

This function is useful when calling canvas control functions that require Point structures as
input parameters. You can embed a call to MakePoint in calls to these functions, thereby
eliminating the need to declare a Point variable.

Parameters

Input xCoordinate integer The horizontal location of the point.

yCoordinate integer The vertical location of the point.

Return Value

point Point A Point structure containing the specified coordinate
values.

See Also

PointSet, MakeRect

MakeRect
Rect rect = MakeRect (int top, int left, int height, int width);

Purpose

Returns a Rect structure with the specified values. The Rect structure defines the location and
size of a rectangle.

This function is useful when calling canvas control functions that require Rect structures as
input parameters. You can embed a call to MakeRect in calls to these functions, thereby
eliminating the need to declare a Rect variable.

Parameters

Input top integer The location of the top edge of the rectangle.

left integer The location of the left edge of the rectangle.

height integer The height of the rectangle.

width integer The width of the rectangle.

Return Value

rect Rect A Rect structure containing the specified coordinate values.

See Also

RectSet, MakePoint

NewBitmap
int status = NewBitmap (int bytesPerRow, int pixelDepth, int width, int height,

int colorTable[], unsigned char bits[],
unsigned char mask[], int * bitmapID);

Purpose

Creates a bitmap object. The bitmap ID can then be passed any function that accepts a bitmap,
such as CanvasDrawBitmap or ClipboardPutBitmap .

You can discard the bitmap object by passing its ID to DiscardBitmap .

Parameters

Input bytesPerRow integer The number of bytes on each scan line of the image.

pixelDepth integer The number of bits per pixel.

width integer The width of the image, in pixels.

height integer The height of the image, in pixels.

colorTable integer
array

An array of RGB color values, or NULL if
pixelDepth is greater than 8.

bits unsigned
char array

An array of bits that determine the colors to be
displayed on each pixel in the image.

mask unsigned
char array

An array containing one bit per pixel in the image.
Each bit specifies whether the pixel is actually drawn.
May be NULL.

Output bitmapID integer An ID that serves as a handle to the bitmap object.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

Depending on the pixelDepth and width , the number of bits per line in the bits array might not
be an even multiple of 8. If not, then the extra bits needed to get to the next byte boundary are
considered "padding". If you set bytesPerRow to be a positive number, then the bits for each
scan line must start on a byte boundary, and so padding may be required. In fact, you can set
bytesPerRow to be larger than the minimum number of bytes actually needed. The extra bytes
are also considered padding. If you pass -1, there is no padding at all. The bits for each scan line
immediately follow the bits for the previous scan line.

The valid values for pixelDepth are 1, 4, 8, and 24.

If the pixelDepth is 8 or less, the number of entries in the colorTable array must equal 2 raised
to the power of the pixelDepth parameter. The bits array contain indices into the colorTable
array.

If the pixelDepth is greater than 8, the colorTable parameter is not used. Instead the bits array
contains actual RGB color values, rather than indices into the colorTable array. For a
pixelDepth of 24, each pixel is represented by a 3-byte RGB value of the form 0xRRGGBB,
where RR, GG, and BB represent the red, green and blue intensity of the color. The RR byte
should always be at the lowest memory address of the three bytes.

In the mask array, a bit value of 1 indicates that the pixel is drawn. 0 indicates that the pixel is
not drawn. Exception: If an image has a pixelDepth of 1, pixels with a bits value of 1
(foreground pixels) are always drawn and the mask affects only the pixels with a bitmap of 0
(background pixels). Each row of the mask must be padded to the nearest even-byte boundary.
For example, if the width of the image is 21 pixels, then there must be 32 bits (in other words, 4
bytes) of data in each row of the mask.

A mask is useful for achieving transparency.

You may pass NULL if you do not need a mask.

Note: Only images that are 32 pixels wide and 32 pixels high can use a mask.

See Also

GetBitmapFromFile, GetCtrlBitmap, GetCtrlDisplayBitmap, GetPanelDisplayBitmap,
ClipboardGetBitmap, ClipboardPutBitmap, GetBitmapData, SetCtrlBitmap,
PlotBitmap, CanvasDrawBitmap, DiscardBitmap.

PlotScaledIntensity
int status = PlotScaledIntensity (int panelHandle, int controlID , void * zArray ,

int numberOfXPoints, int numberOfYPoints,
int zDataType, double yGain, double yOffset,
double xGain, double xOffset,
ColorMapEntry colorMapArray [] , int hiColor ,
int numberofColors, int interpColors,
int interpPixels);

Purpose

This function draws a solid rectangular plot in a graph control. It is the same as
PlotIntensity , except that you can apply scaling factors and offsets to the data values.

The plot consists of pixels whose colors correspond to the magnitude of data values in a two-
dimensional array and whose coordinates correspond to the locations of the same data values in
the array, scaled by xGain and yGain and offset by xOffset and yOffset. For instance the pixel
associated with zArray [2][3] is located at the following coordinates.

{x = 3*xGain + xOffset, y = 2*yGain + yOffset}.

The lower left corner of the plot area is located at

{ xOffset, yOffset}.

The upper right corner of the plot area is located at

{(X-1)* xGain + xOffset, (Y-1)*yGain + yOffset},

where

X = Number of X Points
Y = Number of Y Points

Parameters

Input panelHandle integer The specifier for a particular panel that is contained
in memory. This handle will have been returned by
the LoadPanel , NewPanel , or
DuplicatePanel function.

controlID integer The defined constant (located in the .uir header
file) which was assigned to the control in the User
Interface Editor, or the ID returned by the NewCtrl
or DuplicateCtrl function.

zArray numeric
array

An array that contains the data values that are to be
converted to colors.

numberOfXPoints integer The number of points to be displayed along the x-
axis in each row.

numberOfYPoints integer The number of points to be displayed along the y-
axis in each column.

zDataType integer Specifies the data type of the elements in zArray , as
well as the data type of the Color Map values.

yGain double Specifies the scaling factor to be applied to the
vertical locations implied by zArray vertical index
values.

yOffset double Specifies the offset to be added to the vertical
locations implied by zArray vertical index values.

continues

Parameters (Continued)

xGain double Specifies the scaling factor to be applied to the
horizontal locations implied by zArray horizontal
index values.

xOffset double Specifies the offset to be added to the horizontal
locations implied by zArray horizontal index values.

colorMapArray ColorM
apEntry

An array of ColorMapEntry structures which
specifies how the data values in zArray are
translated. The maximum number of entries is 255.

hiColor integer The RGB value to which all zArray values that are
higher than the highest data value in
colorMapArray are translated.

numberOfColors integer The number of entries in colorMapArray . Must be
less than or equal to 255.

interpColors integer Indicates how to assign colors to zArray data values
that do not exactly match the data values in the
colorMapArray .

interpPixels integer Indicates how pixels between the pixels assigned to
the zArray values are colored.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

zArray must be one of the following data types (specified in zDataType).

VAL_DOUBLE
VAL_FLOAT
VAL_INTEGER
VAL_SHORT_INTEGER
VAL_CHAR
VAL_UNSIGNED_INTEGER
VAL_UNSIGNED_SHORT_INTEGER
VAL_UNSIGNED_CHAR

The locations at which the colors are shown on the graph depend on that location of the data
values in zArray .

• zArray should be a two-dimensional array of the following form.

zArray[numberOfYPoints][numberOfXPoints]

• Each element of the array is associated with a pixel on the graph. The pixel associated with
element zArray [y][x] is located at {x * xGain + xOffset, y * yGain + yOffset} on the
graph.

colorMapArray contains up to 255 ColorMapEntry structures, which consist of:

union {
char valChar;
int valInt;
short valShort;
float valFloat;
double valDouble;
unsigned char valUChar;
unsigned long valULong;
unsigned short valUShort;

} data Value;
int color; /* RGB value */

The Color Map array defines how data values in zArray are translated into color values. If a
data value matches exactly to a data value in one of the ColorMapEntry structures, then it is
converted to the corresponding color. Otherwise, the following conditions apply.

• If interpColors is zero, the color associated with the next higher data value is used.

• If interpColors is nonzero, the color is computed using a weighted mean of the colors
associated with the Color Map data values immediately above and below the zArray value.

• Regardless of the value of interpColors, the following conditions apply.

– Data below the lowest Color Map data value are assigned the color of the lowest Color
Map data value.

– Data values above the highest Color Map data value are assigned the value of the hiColor
parameter.

If interpColors is nonzero, the numberOfColors must be greater than or equal to 2.

The colorMapArray entries do not need to be in sorted order.

interpPixels indicates how pixels between the pixels assigned to the zArray values are colored.
If interpPixels is zero, an unassigned pixel is given the same color as the closest assigned pixel.
If interpPixels is nonzero, an unassigned pixel is first given a data value using a weighted mean
of the data values associated with the four closest assigned pixels. Then the color is calculated
using the Color Map.

Performance Considerations

If interpPixels is zero, the performance depends on the number of data points in zArray .

If interpPixels is nonzero, the performance depends on the total number of pixels in the plot
area.

PointEqual
int pointsAreEqual = PointEqual (Point point1, Point point2);

Purpose

Indicates if two points are the same.

Returns 1 if the x and y values of two specified points are the same. Returns 0 otherwise.

Parameters

Input point1 Point A point structure.

point2 Point A point structure.

Return Value

pointsAreEqual integer An indication of the two points are the same.

Return Codes

1 The x and y coordinates in the two Point structures are the same.

0 The x and y coordinates in the two Point structures are not the same.

See Also

MakePoint

PointPinnedToRect
void PointPinnedToRect (Point point, Rect rect, Point * pinnedPoint);

Purpose

This function ensures that a point is within a specified rectangular area. If the point is already
enclosed by the rectangle, the location of the point remains unchanged. If the point is outside the
rectangle, its location is set to the nearest point on the edge of the rectangle.

The Point structure containing the original location is not modified. The calculated location is
stored in another Point structure.

Parameters

Input point Point A Point structure specifying the original location of the
point.

rect Rect A Rect structure specifying the rectangle to which the
point is to be pinned.

Output pinnedPoint Point The Point structure in which the calculated location is
stored.

Return Value

None

See Also

MakePoint, MakeRect.

PointSet
void PointSet (Point * point, int xCoordinate, int yCoordinate);

Purpose

Sets the values in an existing Point structure. The Point structure defines the location of a
point.

Parameters

Input xCoordinate integer The new horizontal location of the point.

yCoordinate integer The new vertical location of the point.

Output point Point The Point structure in which the new values are set.

Return Value

None

See Also

MakePoint

RectBottom
int bottom = RectBottom (Rect rect);

Purpose

Returns the y coordinate of the bottom edge a rectangle. The bottom edge is not enclosed by the
rectangle. It is computed as follows.

bottom = rect.top + rect.height

Parameter

Input rect Rect Specifies the location and size of a rectangle.

Return Value

bottom integer The y coordinate of the bottom of the rectangle. The bottom
is not enclosed by the rectangle, and is equal to rect.top +
rect.height.

See Also

RectRight

RectCenter
void RectCenter (Rect rect, Point * center);

Purpose

Calculates the location of the center point of the specified rectangle. For even heights (or
widths), the center point is rounded towards the top (or left).

Parameters

Input rect Rect Specifies the location and size of a rectangle.

Output center Point Specifies the location of the center of the rectangle.

Return Value

None

RectContainsPoint
int containsPoint = RectContainsPoint (Rect rect, Point point);

Purpose

Returns 1 if the specified rectangle encloses the specified point. Returns 0 otherwise. The
rectangle is considered to enclose the point if the point is in the interior of the rectangle or on its
frame.

Parameters

Input rect Rect Specifies the location and size of a rectangle.

Output point Point Specifies the location of the center of the rectangle.

Return Value

containsPoint integer Indicates if rect contains point.

Return Codes

1 point is in the interior or on the frame of the rectangle specified by rect.

0 point is outside the frame of the rectangle specified by rect.

RectContainsRect
int containsRect = RectContainsRect (Rect rect1, Rect rect2);

Purpose

Returns 1 if the first rectangle encloses the second rectangle. Returns 0 otherwise. A rectangle is
considered to enclose another rectangle if every point of the second rectangle is in the interior or
on the frame of the first rectangle. (A rectangle encloses itself.)

Parameters

Input rect1 Rect Specifies the location and size of a rectangle.

rect2 Rect Specifies the location and size of a rectangle.

Return Value

containsRect integer Indicates if rect1 encloses rect2.

Return Codes

1 rect1 encloses rect2.

0 rect1 does not enclose rect2.

RectEmpty
int isEmpty = RectEmpty (Rect rect);

Purpose

Returns 1 if the specified rectangle is empty. Returns 0 otherwise. A rectangle is considered to
be empty if either its height or width is less than or equal to zero.

Parameter

Input rect Rect Specifies the location and size of a rectangle. A Rect
structure.

Return Value

isEmpty integer Indicates if the rectangle specified by rect is empty.

Return Codes

1 Either rect.height or rect.width of is less than or equal to zero.

0 Both rect.height and rect.width are greater than zero.

RectEqual
int areEqual = RectEqual (Rect rect1, Rect rect2);

Purpose

Returns 1 if the location and size of the two specified rectangles are identical. Returns 0
otherwise.

Parameters

Input rect1 Rect Specifies the location and size of a rectangle.

rect2 Rect Specifies the location and size of a rectangle.

Return Value

areEqual integer Indicates if the top, left, height, and width values in rect1 are
identical to those of rect2.

Return Codes

1 rect1 and rect2 have the identical top, left, height, and width values.

0 rect1 and rect2 do not have the identical top, left, height, and width values.

RectGrow
void RectGrow (Rect * rect, int dx, int dy);

Purpose

Modifies the values in a Rect structure so that the rectangle it defines grows or shrinks around
its current center point.

Parameters

Input/Output rect Rect On input, specifies the size and location of a rectangle.
On output, specifies a rectangle of a different size but the
same center point.

Input dx integer The amount to grow the rectangle horizontally. Use a
negative value to shrink the rectangle horizontally.

dy integer The amount to grow the rectangle vertically. Use a
negative value to shrink the rectangle vertically.

Return Value

None

RectIntersection
int rectsIntersect = RectIntersection (Rect rect1, Rect rect2, Rect * intersectionRect);

Purpose

Returns an indication of whether two rectangles are intersecting. If they are, the function fills in
a Rect structure describing the intersection area.

Parameters

Input rect1 Rect Specifies the location and size of a rectangle.

rect2 Rect Specifies the location and size of a rectangle.

Output intersectionRect Rect The Rect structure set to the largest rectangle
enclosed by both rect1 and rect2. If rect1 and rect2
do not intersect, this parameter is set to an empty
rectangle (height and width of zero). You may pass 0
for this parameter.

Return Value

rectsIntersect integer Indicates if rect1 and rect2 intersect (have any points
in common).

Return Codes

1 rect1 and rect2 intersect.

0 rect1 and rect2 do not intersect.

RectMove
void RectMove (Rect * rect, Point point);

Purpose

Modifies a Rect structure so that the top, left corner of the rectangle it defines is at the
specified point.

Parameters

Input/Output rect Rect On input, specifies the size and location of a rectangle.
On output, specifies a rectangle of the same size but a
different location.

Input point Point A Point structure specifying the new location of the top,
left corner of the rectangle.

Return Value

None

RectOffset
void RectOffset (Rect * rect, int dx, int dy);

Purpose

Modifies the values in a Rect structure to shift the location of the rectangle it defines.

Parameters

Input/Output rect Rect On input, specifies the size and location of a rectangle.
On output, specifies a rectangle of the same size but a
different location.

Input dx integer The amount to shift the rectangle horizontally. Use a
positive value to shift the rectangle to the right. Use a
negative value to shift the rectangle to the left.

dy integer The amount to shift the rectangle vertically. Use a
positive value to shift the rectangle down. Use a negative
value to shift the rectangle up.

Return Value

None

RectRight
int rightEdge = RectRight (Rect rect);

Purpose

Returns the x coordinate of the right edge a rectangle. The right edge is not enclosed by the
rectangle. It is computed as follows.

rightEdge = rect.left + rect.width

Parameter

Input rect Rect Specifies a rectangle.

Return Value

rightEdge integer The x coordinate of the right edge of the rectangle. The
right edge is not enclosed by the rectangle, and is equal
to rect.left + rect.width.

See Also

RectBottom

RectSameSize
int areSameSize = RectSameSize (Rect rect1, Rect rect2);

Purpose

Returns 1 if the two specified rectangle have the same height and width. Returns 0 otherwise.

Parameters

Input rect1 Rect Specifies the location and size of a rectangle.

rect2 Rect Specifies the location and size of a rectangle.

Return Value

areSameSize integer Indicates if the height, and width values in rect1 are identical
to those of rect2.

Return Codes

1 rect1 and rect2 have the identical height, and width.

0 rect1 and rect2 do not have the identical height and width.

RectSet
void RectSet (Rect * rect, int top, int left, int height, int width);

Purpose

Sets the values in an existing Rect structure. The Rect structure defines the location and size
of a rectangle.

Parameters

Input top integer The new location of the top edge of the rectangle.

left integer The new location of the left edge of the rectangle.

height integer The new height of the rectangle.

width integer The new width of the rectangle.

Output rect Rect The Rect structure in which the new values are set.

Return Value

None

See Also

MakeRect

RectSetBottom
void RectSetBottom (Rect * rect, int bottom);

Purpose

Sets the height of a Rect structure so that the bottom edge of the rectangle it defines is at the
specified location. The bottom edge of the rectangle is not enclosed by the rectangle and is equal
to the top plus the height.

Parameters

Input/Output rect Rect On input, specifies the size and location of a rectangle.
On output, specifies the same rectangle except with a
different bottom edge.

Input bottom integer The y coordinate of the new bottom edge.

Return Value

None

RectSetCenter
void RectSetCenter (Rect * rect, Point center);

Purpose

Modifies the values of a Rect structure so that it retains its current size but is centered around
the specified point.

Parameters

Input/Output rect Rect On input, specifies the size and location of a rectangle.
On output, specifies a rectangle of the same size but with
a different center point.

Input center Point A Point structure specifying the location of the new
center point of the rectangle.

Return Value

None

RectSetFromPoints
void RectSetFromPoints (Rect * rect, Point point1, Point point2);

Purpose

Sets the values in a Rect structure so that it defines the smallest rectangle that encloses two
specified points. Each point is located on a corner of the frame of the rectangle.

Parameters

Input point1 Point Specifies the location of a point.

point1 Point Specifies the location of a point.

Output rect Rect The Rect structure that is set to enclose the specified points.

Return Value

None

RectSetRight
void RectSetRight (Rect * rect, int right);

Purpose

Sets the width of a Rect structure so that the right edge of the rectangle it defines is at the
specified location. The right edge of the rectangle is not enclosed by the rectangle and is equal
to the left edge plus the width.

Parameters

Input/Output rect Rect On input, specifies the size and location of a rectangle.
On output, specifies the same rectangle except with a
different right edge.

Input right integer The x coordinate of the new right edge.

Return Value

None

RectUnion
void RectUnion (Rect rect1, Rect rect2, Rect * unionRect);

Purpose

Calculates the smallest rectangle which encloses two specified rectangles.

Parameters

Input rect1 Rect Specifies the size and location of a rectangle.

rect1 Rect Specifies the size and location of a rectangle.

Output unionRect Rect The Rect structure that is set to the smallest rectangle that
encloses both rect1 and rect2.

Return Value

None

ReplaceAxisItem
int status = ReplaceAxisItem (int panelHandle, int controlID , int axis,

int itemIndex, char itemLabel[] , double
itemValue);

Purpose

This function replaces the string/value pair at the specified index in the list of label strings for a
graph or strip chart axis. These strings appear in place of the numerical labels. They appear at
the location of their associated values on the graph or strip chart.

To see string labels on an X axis, you must set the ATTR_XUSE_LABEL_STRINGS attribute to
TRUE. To see string labels on a Y axis, you must set the ATTR_YUSE_LABEL_STRINGS
attribute to TRUE.

The original list of label strings can be created in the User Interface Editor or by calling
InsertAxisItem .

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

axis integer Specifies the axis for which to replace the string/value
pair at the specified index. Valid values:
VAL_XAXIS
VAL_LEFT_YAXIS
VAL_RIGHT_YAXIS (graphs only)

itemIndex integer The zero-based index of the item to be replaced.

itemLabel string The string to replace the existing string in the item at the
specified index. If you pass 0, then the existing string is
not replaced. A maximum of 31 characters from the
string are shown in an axis label.

itemValue double The value to replace the existing value in the
string/value pair at the specified index. The string
appears as an axis label at the location of the value.

Return Value

status integer Refer to Appendix A for error codes.

See Also

InsertAxisItem, DeleteAxisItem, ClearAxisItems, GetNumAxisItems

SetAxisScalingMode
int status = SetAxisScalingMode (int panelHandle, int controlID , int axis,

int axisScaling, double min, double max);

Purpose

Sets the scaling mode and the range of any graph axis or the Y axis of a strip chart.

This function is not valid for the X axis of a strip chart. To set the X offset and X increment for
a strip chart, use the SetCtrlAttribute function with the ATTR_XAXIS_OFFSET and
ATTR_XAXIS_GAIN attributes.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

axis integer Specifies for which axis to set the mode and range. Valid
values:
VAL_XAXIS (graphs only)
VAL_LEFT_YAXIS (graphs and strip charts)
VAL_RIGHT_YAXIS (graphs only)

axisScaling integer The scaling mode to be used for the axis. See table
below.

min double The minimum axis value when the axis is configured for
manual scaling.

max double The maximum axis value when the axis is configured for
manual scaling.

Return Value

status integer Refer to Appendix A for error codes.

Parameter Discussion

axisScaling must be one of the following values.

Valid Value Description

VAL_MANUAL The axis is set to manual scaling, and its range is
defined by min and max.

VAL_AUTOSCALE The axis is set to auto scaling. min and max are not
used. You cannot use auto scaling in strip charts.

VAL_LOCK The axis is set to manual scaling using the current
(usually auto-scaled) minimum and maximum
values on the axis. You cannot use VAL_LOCK in
strip charts.

If axisScaling is VAL_MANUAL, max must exceed min.

See Also

GetAxisScalingMode

SetCtrlBitmap
int status = SetCtrlBitmap (int panelHandle, int controlID , int imageID,

int bitmapID);

Purpose

Sets the image of a control from a bitmap object. Can be used to replace an existing image on a
control or to create a new image on a control.

The following control types can contain images:

picture controls
picture rings
picture buttons
graph controls

For picture controls, this function can be used as an alternative to DisplayImageFile .

For picture buttons, this function can be used as an alternative to SetCtrlAttribute with
the attribute set to ATTR_IMAGE_FILE.

For picture rings, this function can be used as an alternative to ReplaceListItem . (To add a
new entry, first call InsertListItem with a NULL value, and then call SetCtrlBitmap .)

For graphs, you must first call PlotBitmap with a NULL filename. Then call
SetCtrlBitmap .

If you want to delete an image, call SetCtrlBitmap with 0 as the value for the bitmap ID.

Parameters

Input panelHandle integer The specifier for a particular panel that is contained in
memory. This handle will have been returned by the
LoadPanel , NewPanel , or DuplicatePanel
function.

controlID integer The defined constant (located in the .uir header file)
which was assigned to the control in the User Interface
Editor, or the ID returned by the NewCtrl or
DuplicateCtrl function.

imageID integer For picture rings, the zero-based index of an image in the
ring. For graphs, this argument is the plotHandle returned
from PlotBitmap . For picture controls and picture
buttons, this argument is ignored.

bitmapID integer The ID of the bitmap object containing the new image.
The ID must have been obtained from NewBitmap ,
GetBitmapFromFile , GetCtrlBitmap ,
ClipboardGetBitmap , GetCtrlDisplayBitmap ,
or GetPanelDisplayBitmap .

Return Value

status integer Refer to Appendix A for error codes.

See Also

NewBitmap, GetBitmapFromFile, GetCtrlBitmap, GetCtrlDisplayBitmap,
GetPanelDisplayBitmap, ClipboardGetBitmap.

SetSystemAttribute
int status = SetSystemAttribute (int systemAttribute, …);

Purpose

Sets the value of a particular system attribute.

Parameters

Input systemAttribute integer ATTR_ALLOW_UNSAFE_TIMER_EVENTS

attributeValue depends on
the attribute

The value of the specified attribute. See Table
3-7 for values associated with this attribute.

Return Value

status integer Refer to Appendix A for error codes.

© National Instruments Corporation 4-1 LabWindows/CVI 4.0 Addendum

Chapter 4
Updates to the Standard
Libraries Reference Manual

Chapter Contents
Changes to the ANSI C Library and Low-Level I/O Functions.. 4
errno Set by File I/O Functions... 4
New Low-Level I/O Function... 4
New ANSI C Library Function ... 5

fdopen ... 5
Changes to the Formatting and I/O Library... 7
Improved File I/O Error Reporting ... 7

GetFmtIOError.. 7
GetFmtIOErrorString .. 8

Changes to the GPIB Library.. 9
Different Levels of Functionality Depending on Platform and GPIB Board 9

Windows 3.1 ... 9
Windows 95.. 9
Windows NT... 10

Limitations on Transfer Size... 10
Multithreading .. 10
Notification of SRQ and Other GPIB Events .. 11

Synchronous Callbacks... 11
Asynchronous Callbacks... 11
Driver Version Requirements .. 11

New Functions.. 12
ibInstallCallback.. 12
SRQI, RQS, and Auto Serial Polling ... 14
ibNotify... 15
SRQI, RQS, and Auto Serial Polling ... 16
ThreadIbcnt ... 18
ThreadIbcntl .. 19
ThreadIberr.. 19
ThreadIbsta.. 21

Changes to the RS-232 Library... 23
New Function ... 23

InstallComCallback... 23
Changes to the Utility Library... 27
Corrections to Documentation .. 27

LaunchExecutableEx... 27
Modifications to Existing Functions for Windows 95 and NT... 27

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-2 © National Instruments Corporation

DisableTaskSwitching... 27
LoadExternalModule... 28
SetSystemDate and SetSystemTime .. 29
EnableInterrupts and DisableInterrupts.. 29

Revised Error Codes... 29

New Functions... 33
CVILowLevelSupportDriverLoaded.. 33
GetBreakOnProtectionErrors ... 34
GetCVIVersion.. 34
GetCurrentPlatform ... 35
GetModuleDir... 36
LoadExternalModuleEx... 37
ReadFromPhysicalMemoryEx ... 39
ReleaseExternalModule... 40
SetBreakOnLibraryErrors.. 41
SetBreakOnProtectionErrors.. 42
WriteToPhysicalMemoryEx .. 43

Easy I/O for DAQ Library .. 45
Easy I/O for DAQ Library Function Overview.. 45

Advantages of Using the Easy I/O for DAQ Library.. 45
Limitations of Using the Easy I/O for DAQ Library .. 46
Easy I/O for DAQ Library Function Panels ... 46
Device Numbers.. 48
Channel String for Analog Input Functions.. 48
Command Strings .. 50
Channel String for Analog Output Functions ... 51
Valid Counters for the Counter/Timer Functions ... 51

The Easy I/O for DAQ Function Reference... 52
AIAcquireTriggeredWaveforms .. 52
AIAcquireWaveforms.. 57
AICheckAcquisition.. 59
AIClearAcquisition.. 59
AIReadAcquisition.. 60
AISampleChannel.. 61
AISampleChannels.. 62
AIStartAcquisition... 63
AOClearWaveforms.. 64
AOGenerateWaveforms... 64
AOUpdateChannel... 66
AOUpdateChannels... 66
ContinuousPulseGenConfig... 67
CounterEventOrTimeConfig.. 69
CounterMeasureFrequency.. 72
CounterRead.. 75
CounterStart .. 76

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-3 LabWindows/CVI 4.0 Addendum

CounterStop... 76
DelayedPulseGenConfig.. 77
FrequencyDividerConfig ... 79
GetAILimitsOfChannel ... 82
GetChannelIndices... 84
GetChannelNameFromIndex ... 85
GetDAQErrorString .. 86
GetNumChannels... 87
GroupByChannel... 88
ICounterControl... 88
PlotLastAIWaveformsPopup ... 90
PulseWidthOrPeriodMeasConfig... 91
ReadFromDigitalLine .. 92
ReadFromDigitalPort... 94
WriteToDigitalLine ... 96
WriteToDigitalPort.. 97

Error Conditions ... 99

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-4 © National Instruments Corporation

Changes to the ANSI C Library and
Low-Level I/O Functions
This chapter discusses changes made to the LabWindows/CVI ANSI C library and the low-level
I/O functions. The ANSI C library is documented in Chapter 1 of the Standard Libraries
Reference Manual. The low-level I/O functions are implemented by LabWindows/CVI only
under Windows. There is no printed documentation or function panels for the low-level I/O
functions. They are declared in lowlvlio.h , which is in the cvi/include directory. (On
the SPARCstation, you can call the low-level I/O functions in the Sun system library.)

errno Set by File I/O Functions
The errno global variable is now set to indicate specific error conditions by the ANSI C file
I/O functions and the low-level I/O functions. The possible values of errno are declared in
cvi\include\errno.h. There is a base set of values that is common to all platforms.
There are additional values that are specific to particular platforms.

Note: Under Windows 3.1, errno gives very limited information. If the operating system
returns an error, errno is set to EIO.

Under Windows 95 and NT, you can call the Windows SDK GetLastError function to
obtain system specific information when errno is set to one of the following values:

EACCES
EBADF
EIO
ENOENT
ENOSPC

New Low-Level I/O Function
The sopen function has been added to the set of low-level I/O functions. You can use sopen
to restrict the ability of other applications to open a file while your application has that file open.
The documentation for sopen is in lowlvlio.h.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-5 LabWindows/CVI 4.0 Addendum

New ANSI C Library Function
The fdopen function has been added to the ANSI C function panels and the stdio.h include
file.

fdopen
FILE * fp = fdopen (int fileHandle, char * mode);

Note: This function is available only in the Windows version of LabWindows/CVI.

Purpose

You can use this function to obtain a pointer to a buffered I/O stream from a file handle returned
by one of the following functions.

open (low-level I/O)
sopen (low-level I/O)
OpenFile (Formatting and I/O Library)

You can use the return value just as if you had obtained it from fopen .

(Although this function is not in the ANSI standard, it is included in this library because it
returns a pointer to a buffered I/O stream.)

Parameters

Input fileHandle integer File handle returned by open , sopen , or OpenFile .

mode string Specifies the read/write, binary/text, and append modes.

Return Value

fp FILE * Pointer to a buffered I/O file stream.

Return Codes

NULL (0) Failure. More specific information is in errno .

Parameter Discussion

mode is the same as the mode parameter to fopen .

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-6 © National Instruments Corporation

You should use a mode value that is consistent with the mode in which you originally opened
the file. If you use write capabilities that were not enabled when the file handle was originally
opened, the call to fdopen succeeds, but any attempt to write fails. For instance, if you
originally opened the file for reading only, you can pass "rw" to fdopen , but any call to
fwrite fails.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-7 LabWindows/CVI 4.0 Addendum

Changes to the Formatting and I/O Library
This chapter discusses changes made to the LabWindows/CVI Formatting and I/O Library. The
Formatting and I/O Library is documented in the Chapter 2 of the Standard Libraries Reference
Manual.

Improved File I/O Error Reporting
Two new functions have been added to give you more specific error information when a file I/O
error occurs in a Formatting and I/O function.

GetFmtIOError

int status = GetFmtIOError (void);

Purpose

This function returns specific I/O information for the last call to a Formatting and I/O function
that performs file I/O. If the last function was successful, GetLastFmtIOError returns zero (no
error). If the last function that performs I/O encountered an I/O error, GetLastFmtIOError
returns a nonzero value.

Return Value

status integer Indicates success or failure of last function that
performed file I/O.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-8 © National Instruments Corporation

Return Codes

FmtIONoErr 0 No error.

FmtIONoFileErr 1 File not found.

FmtIOGenErr 2 General I/O error.

FmtIOBadHandleErr 3 Invalid file handle.

FmtIOInsuffMemErr 4 Not enough memory.

FmtIOFileExistsErr 5 File already exists.

FmtIOAccessErr 6 Permission denied.

FmtIOInvalArgErr 7 Invalid argument.

FmtIOMaxFilesErr 8 Maximum number of files open.

FmtIODiskFullErr 9 Disk is full.

FmtIONameTooLongErr 10 File name is too long.

GetFmtIOErrorString
char * message = GetFmtIOErrorString (int errorNum);

Purpose

Converts the error number returned by GetLastFmtIOError into a meaningful error message.

Parameters

Input errorNum integer Error Code returned by GetLastFmtIOErr.

Return Value

message string Explanation of error.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-9 LabWindows/CVI 4.0 Addendum

Changes to the GPIB Library
This chapter discusses changes made to the LabWindows/CVI GPIB Library.

Different Levels of Functionality Depending
on Platform and GPIB Board
In general, the GPIB library is same for all platforms and GPIB boards. There are, however,
some exceptions, most notably relating to SRQ notification, support for multithreading, and
limitations on transfer size. These particular issues are discussed later in this chapter. This
section explains the various categories of GPIB support.

Windows 3.1

For Windows 3.1, there are no GPIB library changes between LabWindows/CVI versions 3.1
and 4.0. All GPIB boards are supported in the same way under Windows 3.1.

Windows 95

There are two different kinds of GPIB support for Windows 95. The “native 32-bit” driver and
the “ compatibility” driver. You can see which one you have installed on your system by running
the GPIB Information program in your GPIB Software group and noting the name of the driver.

Driver Name Description

NI-488.2M Native 32-bit driver.

NI-488.2 Compatibility driver.

Native 32-Bit Driver

The native 32-bit driver is a 32-bit device driver written specifically for Windows 95. It is
supported on the following boards.

• AT-GPIB/TNT

• AT-GPIB/TNT +

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-10 © National Instruments Corporation

• AT-GPIB/TNT (Plug and Play)

• PCI-GPIB

• PCMCIA-GPIB

• PCMCIA-GPIB+

If you want to use GPIB under Windows 95 and you have an older board, it is recommended
that you upgrade to one of the boards in this list.

Compatibility Driver

The compatibility driver is a 32-to-16-bit thunking DLL that you can use with the Windows 3.1
GPIB driver under Windows 95. All GPIB boards are supported by the compatibility driver. The
compatibility driver has several limitations. In particular, it does not support multithreading and
transfers are limited to 64k bytes.

Windows NT

The GPIB driver for Windows NT is a native 32-bit driver written specifically for Windows NT.
Version 1.0 supports the following boards:

AT-GPIB

AT-GPIB/TNT

Version 1.2, due to be released in the second half of 1996, will add support for the PCI-GPIB
and PCMCIA-GPIB.

Limitations on Transfer Size
There are no limitations on transfer size except for the compatibility driver under Windows 95.
The compatibility driver is limited to 64k byte transfers.

Multithreading
If you are using multithreading in an external compiler, you can call GPIB functions from more
than one thread at the same time under Windows NT or under Windows 95 with the native 32-
bit driver. In order to be truly multithreaded safe, you must use on of the following versions of
the GPIB driver.

• For Windows 95: Version 1.1 or later.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-11 LabWindows/CVI 4.0 Addendum

• For Windows NT: Version 1.2 or later.
Although previous versions of the drivers support multithreading, they do not support the
ThreadIbsta , ThreadIberr , ThreadIbcnt , or ThreadIbcntl functions. You need
these functions to obtain thread-specific status values when calling GPIB functions from more
than one thread. The global status variables ibsta , iberr , ibcnt , and ibcntl , are not
reliable in this case because they are maintained on a per process basis.

Notification of SRQ and Other GPIB Events

Synchronous Callbacks

In LabWindows/CVI version 3.1, the ibInstallCallback function was added. You use
ibInstallCallback to specify a function to be called when an SRQ is asserted on the
GPIB or when an asynchronous I/O operation has completed. It is a board-level function only.

The same functionality exists on Windows 95 when you are using the compatibility driver.

If you are using Windows NT or the native 32-bit driver for Windows 95, the conditions under
which the function can be called have been expanded. You can specify the callback to be
invoked on the occurrence of any board-level or device-level condition on which you can wait
using the ibwait function.

Callback functions installed with ibInstallCallback are synchronous callbacks, that is,
they are invoked only when LabWindows/CVI is processing events. (LabWindows/CVI
processes events when you call ProcessSystemEvents or GetUserEvent , or when
RunUserInterface is active and you are not in a callback function.) Consequently, the
latency between the occurrence of the GPIB event and the invocation of the callback can be
large. On the other hand, you are not restricted in what you can do in the callback function.

Asynchronous Callbacks

The ability to install asynchronous callbacks have been added for Windows NT and for
Windows 95 with the native 32-bit driver. Asynchronous callbacks are installed with the
ibnotify function and can be called at any time with respect to the rest of your program.
Consequently, the latency between the occurrence of the GPIB event and the invocation of the
callback is smaller than with synchronous callbacks, but you are restricted in what you can do in
the callback function. See the documentation of the ibnotify function later in this chapter for
more details.

Driver Version Requirements

If you are using Windows NT, you must have version 1.2 or later of the GPIB driver to use the
ibInstallCallback and ibnotify functions.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-12 © National Instruments Corporation

If you are using the native 32-bit GPIB driver on Windows 95, you must have version 1.1 or
later to use the ibInstallCallback and ibnotify functions.

If you are using the Windows 3.1 compatibility driver on Windows 95, you can use the limited
version of ibInstallCallback , but you cannot use ibnotify .

New Functions

ibInstallCallback
int status = ibInstallCallback (int boardOrDevice, int eventMask,

GPIBCallbackPtr callbackFunction,
void * callbackData)

Note: This function is available only on Microsoft Windows. On UNIX, use the ibsgnl
function. On Windows 3.1, the data type of the return value and the first two
parameters is short rather than int .

Purpose

This function allows you to install a synchronous callback function for a specified board or
device. If you want to install an asynchronous callback, use the ibnotify function instead.

The callback function is called when any of the GPIB events specified in the Event Mask
parameter have occurred on the board or device, but only while you allow the system to process
events. The system can process events when you call ProcessSystemEvents or
GetUserEvent , or when you have called RunUserInterface and none of your callback
functions are currently active. The callbacks are termed "synchronous" because they can be
invoked only in the context of normal event processing.

Unlike asynchronous callbacks, there are no restrictions on what you can do in a synchronous
callback. On the other hand, the latency between the occurrence of a GPIB event and the
invocation of the callback function is greater and more unbounded with synchronous callbacks
than with asynchronous callbacks.

Only one callback function can apply for each board or device. Each call to this function for the
same board or device supersedes the previous call.

To disable callbacks for a board or device, pass 0 for the event Mask parameter.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-13 LabWindows/CVI 4.0 Addendum

To use this function with the NI-488.2M (native 32-bit) driver, you must have one of the
following versions.

• For Windows 95: Version 1.1 or later.

• For Windows NT: Version 1.2 or later.

If you use the NI-488.2 driver (the Windows 3.1 driver or the compatibility driver in Windows
95), you must pass a board index for the first parameter, and you can use only SRQI or CMPL
for the event mask parameter.

Parameters

Input boardOrDevice integer
(short integer on
Windows 3.1)

A board index, or a board or device descriptor
returned by OpenDev, ibfind , or ibdev .
(On Windows 3.1, must be a board index).

eventMask integer
(short integer on
Windows 3.1)

Specifies the events upon which the callback
function is called. Pass 0 to disable callbacks.
See discussion below.

callbackFunction GPIBCallbackPtr The name of the user function that is called
when the specified events occur. See
discussion below.

callbackData void pointer A pointer to a user-defined four-byte value
that is passed to the callback function.

Return Value

status integer
(short integer on
Windows 3.1)

The same value as the ibsta status variable.
Refer to your NI-488.2 or NI-488.2M user
manual for a description of the values of
ibsta status variable.

eventMask

The conditions upon which to invoke the callback function are specified as bits in the
eventMask parameter. The bits corresponds to the bits of the ibsta status word. This value
reflects a sum of one or more events. If any one of the conditions occur, the callback is called.

If, when you install the callback, one of the bits you have set in the mask is already TRUE, the
callback is scheduled immediately. For example, if you pass CMPL as the eventMask, and the
ibwait function would currently return a status word with CMPL set, the callback is scheduled
immediately.

If you are using a NI-488.2M (native 32-bit) driver then the following mask bits are valid:

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-14 © National Instruments Corporation

• At the board level, you can specify any of the status word bits that can be specified in the
waitMask parameter to the ibwait function for a board, other than ERR. This includes
SRQI, END, CMPL, TIMO, CIC, and others.

• At the device level, you can specify any of the status word bits that can be specified in the
waitMask parameter to the ibwait function for a device, other than ERR. This includes
RQS, END, CMPL, and TIMO.

If you are using a NI-488.2 driver (Windows 3.1 or compatibility driver for Windows 95), then
the only following mask bits are valid:

• SRQI or CMPL but not both.

SRQI, RQS, and Auto Serial Polling

If you want to install a callback for the SRQI (board-level) event, Auto Serial Polling must be
disabled. You can disable Auto Serial Polling with the following function call:

ibconfig (boardIndex, IbcAUTOPOLL, 0);

If you want to install a callback for the RQS (device-level) event, Auto Serial Polling must be
enabled for the board. You can enable Auto Serial Polling with the following function call:

ibconfig (boardIndex, IbcAUTOPOLL, 1);

CallbackFunction

The callback function must have the following form.

void CallbackFunctionName (int boardOrDevice, int mask, void * callbackData);

The mask and callbackData parameters are the same values that were passed to
ibInstallCallback .

If invoked because of an SRQI or RQS condition, the callback function should call the ibrsp
function to read the status byte. For an SRQI (board-level) condition, calling the ibrsp
function is necessary to cause the requesting device to turn off the SRQ line.

char statusByte;
ibrsp (device, &statusByte);

If invoked because an asynchronous I/O operation (started by ibrda , ibwrta , or ibcmda)
completed, the callback function should contain the following call:

ibwait (boardOrDevice, TIMO | CMPL);

The ibcnt and ibcntl status variables are not updated until this call to ibwait is made.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-15 LabWindows/CVI 4.0 Addendum

See Also

ibnotify

ibNotify
int status = ibnotify (int boardOrDevice, int eventMask,

GpibNotifyCallback_t callbackFunction, void * callbackData);

Note: This function is available only on Windows 95 and NT. On UNIX, use the ibsgnl
function.

Purpose

This function allows you to install an asynchronous callback function for a specified board or
device. If you want to install a synchronous callback, use the ibInstallCallback function
instead.

The callback function is called when any of the GPIB events specified in the eventMask
parameter have occurred on the specified board or device. Asynchronous callbacks can be called
at any time while your program is running. You do not have to allow the system to process
events. Because of this, you are restricted in what you can do in the callback. See the
Restrictions on Operations in Asynchronous Callbacks discussion below.

Only one callback function can apply for each board or device. Each call to this function for the
same board or device supersedes the previous call.

To disable callbacks for a board or device, pass 0 for the eventMask parameter.

Parameters

Input boardOrDevice integer A board index, or a board or device
descriptor returned by OpenDev,
ibfind , or ibdev .

eventMask integer Specifies the events upon which the
callback function is called. Pass 0 to
disable callbacks. See discussion below.

callbackFunction GpibNotifyCallback_t The name of the user function that is
called when the specified events occur.
See discussion below.

callbackData void pointer A pointer to a user-defined four-byte
value that is passed to the callback
function.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-16 © National Instruments Corporation

Return Value

status integer The same value as the ibsta status
variable. Refer to your NI-488.2M user
manual for a description of the values of
ibsta status variable.

eventMask

The conditions upon which to invoke the callback function are specified as bits in the
eventMask parameter. The bits corresponds to the bits of the ibsta status word. This value
reflects a sum of one or more events. If any one of the conditions occur, the callback is called.

If, when you install the callback, one of the bits you have set in the mask is already TRUE, the
callback is called immediately. For example, if you pass CMPL as the eventMask, and the
ibwait function would currently return a status word with CMPL set, the callback is called
immediately.

At the board level, you can specify any of the status word bits that can be specified in the
waitMask parameter to the ibwait function for a board, other than ERR. This includes SRQI,
END, CMPL, TIMO, CIC, and others.

At the device level, you can specify any of the status word bits that can be specified in the
waitMask parameter to the ibwait function for a device, other than ERR. This includes RQS,
END, CMPL, and TIMO.

SRQI, RQS, and Auto Serial Polling

If you want to install a callback for the SRQI (board-level) event, Auto Serial Polling must be
disabled. You can disable Auto Serial Polling with the following function call:

ibconfig (boardIndex, IbcAUTOPOLL, 0);

If you want to install a callback for the RQS (device-level) event, Auto Serial Polling must be
enabled for the board. You can enable Auto Serial Polling with the following function call:

ibconfig (boardIndex, IbcAUTOPOLL, 1);

CallbackFunction

The callback function must have the following form.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-17 LabWindows/CVI 4.0 Addendum

void __stdcall CallbackFunctionName (int boardOrDevice, int sta, int err ,
long cntl, void * callbackData);

The callbackData parameter is the same callbackData value passed to
ibInstallCallback . The sta, err , and cntl parameters contain the information that you
normally obtain using the ibsta , iberr , and ibcntl global variables or the
ThreadIbsta , ThreadIberr , and ThreadIbcntl functions. The global variables and
thread status functions return undefined values within the callback function. So you must use the
sta, err and cntl parameters instead.

The value that you return from the callback function is very important. It is the event mask that
is used to rearm the callback. If you return 0, the callback is disarmed (that is, it is not be called
again until you make another call to ibnotify). If you return an event mask different than the
one you originally passed to ibnotify , the new event mask is used. Normally, you want to
return the same event mask that you originally passed to ibnotify .

If you return an invalid event mask or if there is an operating system error in rearming the
callback, the callback is called with the sta set to ERR , err set to EDVR, and cntl set to
IBNOTIFY_REARM_FAILED.

Warning: Because the callback can be called as the result of a rearming error, you should
always check the value of the sta parameter to make sure that one of the
requested events has in fact occurred.

If invoked because of an SRQI or RQS condition, the callback function should call the ibrsp
function to read the status byte. For an SRQI (board-level) condition, calling the ibrsp
function is necessary to cause to requesting device to turn off the SRQ line.

char statusByte;
ibrsp (device, &statusByte);

If invoked because an asynchronous I/O operation (started by ibrda , ibwrta , or ibcmda)
completed, the callback function should contain the following call:

ibwait (boardOrDevice, TIMO | CMPL);

The ibcnt and ibcntl status variables are not updated until this call to ibwait is made.

Restrictions on Operations in Asynchronous Callbacks

Callbacks installed with ibnotify can be called at any time while your program is running.
You do not have to allow the system to process events. Because of this, you are restricted in
what you can do in the callback. You can do the following:

• Call the User Interface Library PostDeferredCall function, which schedules a different
callback function to be called synchronously.

• Call any GPIB function, except ibnotify or ibInstallCallback .

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-18 © National Instruments Corporation

• Manipulate global variables, but only if you know that the callback has not been called at a
point when the main part of your program is modifying or interrogating the same global
variables.

• Call ANSI C functions such as strcpy and sprintf , which affect only the arguments
passed in (that is, have no side effects). You cannot call printf or file I/O functions.

• Call malloc , calloc , realloc , or free .

If you need to do perform operations that fall outside these restrictions, do the following.

1. In your asynchronous callback, perform the time-critical operations in the asynchronous
callback, and call PostDeferredCall to schedule a synchronous callback.

2. In the synchronous callback, perform the other operations.

See Also

ibInstallCallback

ThreadIbcnt
int threadSpecificCount = ThreadIbcnt (void);

This function returns the value of the thread-specific ibcnt variable for the current thread.

The global variables ibsta , iberr , ibcnt , and ibcntl are maintained on a process-
specific (rather than thread-specific) basis. If you are calling GPIB functions in more than one
thread, the values in these global variables may not always be reliable.

Status variables analogous to ibsta , iberr , ibcnt , and ibcntl are maintained for each
thread. This function returns the value of the thread-specific ibcnt variable.

If you are not using multiple threads, the value returned by this function is identical to the value
of the ibcnt global variable.

Parameters

none

Return Value

threadSpecificCount integer The number of bytes actually transferred by the most recent
GPIB read, write, or command operation for the current
thread of execution. If an error occurred loading the GPIB
DLL, this is the error code returned by the MS Windows
LoadLibrary function.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-19 LabWindows/CVI 4.0 Addendum

See Also
ThreadIbsta, ThreadIberr, ThreadIbcntl.

ThreadIbcntl
long threadSpecificCount = ThreadIbcntl (void);

This function returns the value of the thread-specific ibcntl variable for the current thread.

The global variables ibsta , iberr , ibcnt , and ibcntl are maintained on a process-
specific (rather than thread-specific) basis. If you are calling GPIB functions in more than one
thread, the values in these global variables may not always be reliable.

Status variables analogous to ibsta , iberr , ibcnt , and ibcntl are maintained for each
thread. This function returns the value of the thread-specific ibcntl variable.

If you are not using multiple threads, the value returned by this function is identical to the value
of the ibcntl global variable.

Parameters

none

Return Value

threadSpecificCount long
integer

The number of bytes actually transferred by the most
recent GPIB read, write, or command operation for the
current thread of execution. If an error occurred loading
the GPIB DLL, this is the error code returned by the MS
Windows LoadLibrary function.

See Also

ThreadIbsta, ThreadIberr, ThreadIbcnt.

ThreadIberr
int threadSpecificError = ThreadIberr (void);

This function returns the value of the thread-specific iberr variable for the current thread.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-20 © National Instruments Corporation

The global variables ibsta , iberr , ibcnt , and ibcntl are maintained on a process-
specific (rather than thread-specific) basis. If you are calling GPIB functions in more than one
thread, the values in these global variables may not always be reliable.

Status variables analogous to ibsta , iberr , ibcnt , and ibcntl are maintained for each
thread. This function returns the value of the thread-specific iberr variable.

If you are not using multiple threads, the value returned by this function is identical to the value
of the iberr global variable.

Parameters

none

Return Value

threadSpecificError integer The most recent GPIB error code for the current thread of
execution. The value is meaningful only when
ThreadIbsta returns a value with the ERR bit set.

Return Codes

Defined
Constant Value Description

EDVR 0 Operating system error. The system-specific error code is returned by
ThreadIbcntl .

ECIC 1 Function requires GPIB-PC to be CIC.

ENOL 2 No listener on write function.

EADR 3 GPIB-PC addressed incorrectly.

EARG 4 Invalid function call argument.

ESAC 5 GPIB-PC not System Controller as required.

EABO 6 I/O operation aborted.

ENEB 7 Non-existent GPIB-PC board.

EDMA 8 Virtual DMA device error.

EOIP 10 I/O started before previous operation completed.

ECAP 11 Unsupported feature.

EFSO 12 File system error.

EBUS 14 Command error during device call.

continues

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-21 LabWindows/CVI 4.0 Addendum

Return Codes (Continued)

ESTB 15 Serial Poll status byte lost.

ESRQ 16 SRQ stuck in on position.

ETAB 20 Device list error during a FindLstn or FindRQS call.

ELCK 21 Address or board is locked.

ELNK 200 The GPIB library was not linked. Dummy functions were linked instead.

EDLL 201 Error loading GPIB32.DLL. The MS Windows error code is returned by
ThreadIbcntl .

EFNF 203 Unable to find the function in GPIB32.DLL. The MS Windows error
code is returned by ThreadIbcntl .

EGLB 205 Unable to find globals in GPIB32.DLL. The MS Windows error code is
returned by ThreadIbcntl .

ENNI 206 Not a National Instruments GPIB32.DLL.

EMTX 207 Unable to acquire Mutex for loading DLL. The MS Windows error code
is returned by ThreadIbcntl .

EMSG 210 Unable to register callback function with MS Windows.

ECTB 211 The callback table is full.

See Also

ThreadIbsta, ThreadIbcnt, ThreadIbcntl.

ThreadIbsta
int threadSpecificStatus = ThreadIbsta (void);

This function returns the value of the thread-specific ibsta variable for the current thread.

The global variables ibsta , iberr , ibcnt , and ibcntl are maintained on a process-
specific (rather than thread-specific) basis. If you are calling GPIB functions in more than one
thread, the values in these global variables may not always be reliable.

Status variables analogous to ibsta , iberr , ibcnt , and ibcntl are maintained for each
thread. This function returns the value of the thread-specific ibsta variable.

If you are not using multiple threads, the value returned by this function is identical to the value
of the ibsta global variable.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-22 © National Instruments Corporation

Parameters

none

Return Value

threadSpecificStatus integer The status value for the current thread of execution.
The status value describes the state of the GPIB and
the result of the most recent GPIB function call in
the thread. Any value with the ERR bit set indicates
an error. Call ThreadIberr for a specific error
code.

Return Codes

The return value is a sum of the following bits.

Defined
Constant Hex Value Condition

ERR 8000 GPIB error.

END 2000 END or EOS detected.

SRQI 1000 SRQ is on.

RQS 800 Device requesting service.

CMPL 100 I/O completed.

LOK 80 GPIB-PC in Lockout State.

REM 40 GPIB-PC in Remote State.

CIC 20 GPIB-PC is Controller-In-Charge.

ATN 10 Attention is asserted.

TACS 8 GPIB-PC is Talker.

LACS 4 GPIB-PC is Listener.

DTAS 2 GPIB-PC in Device Trigger State.

DCAS 1 GPIB-PC in Device Clear State.

See Also

ThreadIberr, ThreadIbcnt, ThreadIbcntl

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-23 LabWindows/CVI 4.0 Addendum

Changes to the RS-232 Library
This chapter discusses changes made to the LabWindows/CVI RS-232 Library. The RS-232
library is documented in Chapter 8 of the Standard Libraries Reference Manual.

New Function
The following function has been added to the RS-232 Library.

InstallComCallback

int status = InstallComCallback (int COMPort , int eventMask, int notifyCount ,
int eventCharacter, ComCallbackPtr callbackPtr,
void * callbackData);

Note: This function is available only in the Windows version of LabWindows/CVI.

Purpose

This function allows you to install a callback function for a particular COM port. The callback
function is called whenever any of the events specified in the eventMask parameter occur on the
COM port and you allow the system to process events. The system can process events in the
following situations.

• You have called RunUserInterface and none of your callback functions is currently
executing, or

• You call GetUserEvent , or

• You call ProcessSystemEvents

Only one callback function can apply for each COM port. Each call to this function for the same
COM port supersedes the previous call.

To disable callbacks for a board or device, pass 0 for the eventMask and/or callbackFunction
parameters.

Note: The callback function may receive more than one event at a time. When using this
function at higher baud rates, some LWRS_RXCHAR events may be missed. It is
recommended to use LWRS_RECEIVE or LWRS_RXFLAG instead.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-24 © National Instruments Corporation

Note: Once the LWRS_RECEIVE event occurs, it is not triggered again until the input queue
falls below, and then rises back above, notifyCount bytes.

Example

notifyCount = 50; /* Wait for at least 50 bytes in queue */
eventChar = 13; /* Wait for LF */
eventMask = LWRS_RXFLAG | LWRS_TXEMPTY | LWRS_RECEIVE;

InstallComCallback (comport, eventMask, notifyCount,
 eventChar, ComCallback, NULL);
...

/* Callback Function */
void ComCallback(int portNo, int evnetMask, void *data)
{
 if (eventMask & LWRS_RXFLAG)
 printf("Received specified character\n");
 if (eventMask & LWRS_TXEMPTY)
 printf("Transmit queue now empty\n");
 if (eventMask & LWRS_RECEIVE)
 printf("50 or more bytes in input queue\n");
}

Parameters

Input COMPort integer Range 1 through 32.

eventMask integer The events upon which the callback function
is called. See the Parameter Discussion for a
list of valid events. If you want to disable
callbacks, pass 0.

notifyCount integer The minimum number of bytes the input
queue must contain before sending the
LWRS_RECEIVE event to the callback
function.
Valid Range: 0 to Size of Input Queue.

eventCharacter integer Specifies the character or byte value that
triggers the LWRS_RXFLAG event.
Valid Range: 0 to 255.

callbackPtr ComCallbackPtr The name of the user function that processes
the event callback.

callbackData void * A pointer to a user-defined four-byte value
that is passed to the callback function.

Return Value

status integer Refer to error codes in Table 5-6 in the
LabWindows/CVI Standard Libraries
Reference Manual.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-25 LabWindows/CVI 4.0 Addendum

Parameter Discussion

The callback function must have the following form.
void CallbackFunctionName (int COMPort , int eventMask, void * callbackData);

The eventMask and callbackData parameters are the same values that were passed to
InstallComCallback .

The events are specified using bits in the eventMask parameter. You can specify multiple event
bits in the eventMask parameter. The valid event bits are listed in the table below.

Bit Hex Value Com Port Event Constant Name

0 0x0001 Any character received. LWRS_RXCHAR

1 0x0002 Received certain character. LWRS_RXFLAG

2 0x0004 Transmit Queue empty. LWRS_TXEMPTY

3 0x0008 CTS changed state. LWRS_CTS

4 0x0010 DSR changed state. LWRS_DSR

5 0x0020 RLSD changed state. LWRS_RLSD

6 0x0040 BREAK received. LWRS_BREAK

7 0x0080 Line status error occurred. LWRS_ERR

8 0x0100 Ring signal detected. LWRS_RING

15 0x8000 notifyCount bytes in inqueue. LWRS_RECEIVE

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-26 © National Instruments Corporation

The following table further describes the events.

Event Constant
Name

Description

LWRS_RXCHAR Set when any character is received and placed in the
receiving queue.

LWRS_RXFLAG Set when the event character is received and placed in the
receiving queue. The event character is specified in the
eventCharacter parameter of this function.

LWRS_TXEMPTY Set when the last character in the transmission queue is
sent.

LWRS_CTS Set when the CTS (clear-to-send) line changes state.

LWRS_DSR Set when the DSR (data-set-ready) line changes state.

LWRS_RLSD Set when the RLSD (receive-line-signal-detect) line
changes state.

LWRS_BREAK Set when a break is detected on input.

LWRS_ERR Set when a line-status error occurs. Line-status errors are
CE_FRAME, CE_OVERRUN, and CE_RXPARITY.

LWRS_RING Set to indicate that a ring indicator was detected.

LWRS_RECEIVE Set to detect when at least notifyCount bytes are in the
input queue. Once this event has occurred, it does not
trigger again until the input queue falls below, and then
rises back above, notifyCount bytes.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-27 LabWindows/CVI 4.0 Addendum

Changes to the Utility Library
This chapter discusses changes made to the LabWindows/CVI Utility Library. The Utility
Library is documented in Chapter 8 of the Standard Libraries Reference Manual.

Corrections to Documentation
The following corrections should be made to Chapter 8, Utility Library, of the Standard
Libraries Reference Manual.

LaunchExecutableEx

In the Launching LabWindows/CVI Runtime Executables section, the following line,

c:\cvi\cvirt3.exe c:\test\myapp.exe c:\test\myargs

should be replaced by the following.

c:\cvi\cvirt40.exe c:\test\myappe.exe myargs

Immediately following that line, add the following text.

The file containing the arguments must be in the same directory as the executable. The first three
characters in the file containing the arguments must be “CVI” in uppercase, as in the following
example:

 CVI arg1 arg2 arg3

Modifications to Existing Functions for
Windows 95 and NT
The following modifications have been made to existing functions.

DisableTaskSwitching

For Windows 95, the task list is replaced by the task bar. If you follow the instructions for
forcing your window to cover the entire screen, the task bar is also covered and cannot be
accessed by the end-user.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-28 © National Instruments Corporation

For Windows NT, DisableTaskSwitching has no effect. To achieve the same results, you
must disable the Task Manager and arrange for your LabWindows/CVI application to be brought
up in place of the Program Manager. You can do this by making following changes to the
registry entry on the following key.

HKEY_LOCAL_MACHINE\Software\Microsoft\CurrentVersion\Winlogon

• Change the value for SHELL to the pathname of your application executable.

• Add a value with the name of TASKMAN. Set the data to an empty string.

Certain user operations on MS Windows, such as dragging a window or pulling down the system
menu, interfere with the processing of events. The most complete way to keep such operations
from interfering with real-time processing is to fix the position of your panels, hide the system
menu, and so on. Now, as an alternative, you can enable timer callbacks on Windows 95 and NT
during some, but not all, of these operations. You do this with the following function call.

SetSystemAttribute (ATTR_ALLOW_UNSAFE_TIMER_EVENTS, 1);

(This can be unsafe. See the discussion of the ATTR_ALLOW_UNSAFE_TIMER_EVENTS
attribute in Chapter 3 of this document.)

LoadExternalModule

Add the following two return codes.

-25 DLL initialization function failed.

-26 module already loaded with different calling module handle.
(See LoadExternalModuleEx .)

In the second paragraph of the Parameter Discussion section, change

In Windows

to

In Windows 3.1

After the second paragraph of the Parameter Discussion section, add the following.

In Windows 95 and NT, the file may be an object file (.obj), a library file (.lib), or a DLL
import library (.lib). You cannot load a DLL directly. Object and library modules can be
compiled in LabWindows/CVI or an external compiler.

In the Using This Function section, add the following before the example.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-29 LabWindows/CVI 4.0 Addendum

If the pathname is for a DLL import library, LoadExternalModule finds the DLL using
the DLL name embedded in the import library and the standard Windows DLL search algorithm.

SetSystemDate and SetSystemTime

On Windows NT, you must have system administrator status to use the SetSystemDate and
SetSystemTime functions.

EnableInterrupts and DisableInterrupts

On Windows NT, the EnableInterrupts and DisableInterrupts functions have no
effect.

Revised Error Codes
New error codes have been added for some of the Utility library functions. In some cases, the
existing error codes have been reduced in scope or changed in value. The following is the
complete set of error codes for each of the functions for which error codes have been added.

CopyFile

 0 Success.

-1 File not found or directory in path not found.

-3 General I/O error occurred.

-4 Insufficient memory to complete operation.

-5 Invalid path (for either of the file names).

-6 Access denied.

-7 Specified path is a directory, not a file.

-8 Disk is full.

DeleteDir

 0 Success.

-1 Directory not found.

-3 General I/O error occurred.

-4 Insufficient memory to complete operation.

-6 Access denied, or directory not empty.

-7 Path is a file, not a directory.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-30 © National Instruments Corporation

DeleteFile

 0 Success.

-1 File not found or directory in path not found.

-3 General I/O error occurred.

-4 Insufficient memory to complete operation.

-5 Invalid path (for example, c:filename in Windows).

-6 Access denied.

-7 Specified path is a directory, not a file.

GetDir

 0 Success.

-3 General I/O error occurred.

-4 Insufficient memory to complete operation.

GetDrive

0 Success.

-1 Current directory is on a network drive that is not mapped to a local
drive. (currentDriveNumber is set correctly, but numberOfDrives is
set to -1.)

-3 General I/O error occurred.

-4 Insufficient memory to complete operation.

-6 Access denied.

GetFileDate

 0 Success.

-1 File not found or directory in path not found.

-3 General I/O error occurred.

-4 Insufficient memory to complete operation.

-5 Invalid path (for example, c:filename in Windows).

-6 Access denied.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-31 LabWindows/CVI 4.0 Addendum

GetFileSize

 0 Success.

-1 File not found or directory in path not found.

-3 General I/O error occurred.

-4 Insufficient memory to complete operation.

-5 Invalid path (for example, c:filename in Windows).

-6 Access denied.

GetFileTime

 0 Success.

-1 File not found or directory in path not found.

-3 General I/O error occurred.

-4 Insufficient memory to complete operation.

-5 Invalid path (for example, c:filename in Windows).

-6 Access denied.

GetFirstFile

 0 Success.

-1 Files found that match criteria.

-3 General I/O error occurred.

-4 Insufficient memory to complete operation.

-5 Invalid path (for example, c:filename in Windows).

-6 Access denied.

MakeDir

0 Success.

-1 One of the path components not found.

-3 General I/O error occurred.

-4 Insufficient memory to complete operation.

-5 Invalid path (for example, c:filename in Windows).

-6 Access denied.

-8 Disk is full.

-9 Directory or file already exists with same pathname.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-32 © National Instruments Corporation

RenameFile

0 Success.

-1 File not found or directory in path not found.

-3 General I/O error occurred.

-4 Insufficient memory to complete operation.

-5 Invalid path (for either of the file names).

-6 Access denied.

-7 Specified existing path is a directory, not a file.

-8 Disk is full.

-9 New file already exists.

SetFileDate

 0 Success.

-1 File not found or directory in path not found.

-3 General I/O error occurred.

-4 Insufficient memory to complete operation.

-5 Invalid date, or invalid path (for example, c:filename in Windows).

-6 Access denied.

SetFileTime

 0 Success.

-1 File not found or directory in path not found.

-3 General I/O error occurred.

-4 Insufficient memory to complete operation.

-5 Invalid time, or invalid path (for example, c:filename in Windows).

-6 Access denied.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-33 LabWindows/CVI 4.0 Addendum

New Functions
The following functions have been added to the Utility library.

CVILowLevelSupportDriverLoaded
int loaded = CVILowLevelSupportDriverLoaded (void);

Note: This function is available only in the Windows 95 and NT version of
LabWindows/CVI.

Purpose

This function returns an indication of whether the LabWindows/CVI low-level support driver
was loaded at startup. The following Utility Library functions require the LabWindows/CVI
low-level driver to be loaded at startup.

Function
Platforms where low-level
support driver is needed

inp Windows NT
inpw Windows NT
outp Windows NT
outpw Windows NT
ReadFromPhysicalMemory Windows 95 and NT
ReadFromPhysicalMemoryEx Windows 95 and NT
WriteToPhysicalMemory Windows 95 and NT
WriteToPhysicalMemoryEx Windows 95 and NT
DisableInterrupts Windows 95
EnableInterrupts Windows 95
DisableTaskSwitching Windows 95

Most of these functions do not return an error if the low-level support driver is not loaded. To
make sure your calls to these functions can execute correctly, call
CVILowLevelSupportDriverLoaded at the beginning of your program.

Return Value

loaded integer Indicates whether the LabWindows/CVI low-level
support driver was loaded at startup.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-34 © National Instruments Corporation

Return Codes

1 Low-level support driver was loaded at startup.

0 Low-level support driver was not loaded at startup.

GetBreakOnProtectionErrors
int state = GetBreakOnProtectionErrors (void);

Purpose

This function returns the state of the break on protection errors option. It returns a 1 if the
option is enabled, or a 0 if it is disabled. If debugging is disabled, this function always returns 0.

For more information on the option, see the documentation for SetBreakOnProtectionErrors.

Return Value

state integer The current state of the break on protection errors option.

Return Codes

1 Break on protection errors option enabled.

0 Break on protection errors option disabled.

GetCVIVersion
int versionNum = GetCVIVersion (void);

Purpose

This function returns the version of LabWindows/CVI you are running. In a standalone
executable, this tells you which version of the LabWindows/CVI run-time libraries you are
using.

The value is in the form Nnn, where the N.nn is the version number that shows in the About
LabWindows/CVI dialog box.

For example, for LabWindows/CVI version 4.0, GetCVIVersion returns 400. For version
4.1, it would return 410. The values will always increase with each new version of
LabWindows/CVI.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-35 LabWindows/CVI 4.0 Addendum

The return value of GetCVIVersion should not be confused with the predefined macro
CVI , which specifies the version of LabWindows/CVI in which the source file is compiled.

Return Value

versionNum integer The version number of LabWindows/CVI or the run-
time libraries.

Return Codes

Nnn Where N.nn is the LabWindows/CVI version.

GetCurrentPlatform
int platformCode = GetCurrentPlatform (void);

Purpose

This function returns a code representing the operating system under which a project or
standalone executable is running.

The return value of GetCurrentPlatform should not be confused with the predefined
macros such as _NI_mswin_ , _NI_unix_ , and others, which specify the platform on which
the project is compiled.

This function is useful when you have a program that can run on multiple operating systems but
must take different actions on the different systems. For example, the same standalone
executable can run on both Windows 95 and Windows NT. If the program needs to behave
differently on the two platforms, you can use GetCurrentPlatform to determine the
platform at run-time.

Return Value

platformCode integer Indicates the current operating system.

Return Codes

kPlatformWin16 1 Windows 3.1

kPlatformWin95 2 Windows 95

kPlatformWinnt 3 Windows NT

kPlatformSunos4 4 Sun Solaris 1

kPlatformSunos5 5 Sun Solaris 2

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-36 © National Instruments Corporation

GetModuleDir
int result = GetModuleDir (char directoryName[] , void * moduleHandle);

Note: This function is available only in the Windows 95 and NT versions of
LabWindows/CVI.

Purpose

This function obtains the name of the directory of the specified DLL module.

This function is useful when a DLL and its related files are distributed to multiple users who
may place them in different directories. If your DLL needs to access a file that is in the same
directory as the DLL, you can use the GetModuleDir and MakePathname functions to
construct the full pathname.

If the specified module handle is zero, then this function returns the same result as
GetProjectDir .

Parameter List

Output directoryPathname string Directory of module.

Input moduleHandle void
pointer

Module handle of DLL, or zero for the
project.

Parameter Discussion

directoryPathname must be at least MAX_PATHNAME_LEN bytes long.

If you want to obtain the directory name of the DLL in which the call to GetModuleDir
resides, then pass __CVIUserHInst as the moduleHandle. You can pass any valid Windows
module handle. If you pass 0 for the moduleHandle, this function obtains the directory of the
project or standalone executable.

Return Value

result integer Result of the operation.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-37 LabWindows/CVI 4.0 Addendum

Return Codes

0 Success.

-1 The current project has no pathname (that is, it is untitled).

-2 There is no current project.

-3 Out of memory.

-4 The operating system is unable to determine the module directory (moduleHandle is
probably invalid).

LoadExternalModuleEx
int moduleId = LoadExternalModuleEx (char pathName[] ,

void * callingModuleHandle);

Purpose

LoadExternalModuleEx loads a file containing one or more object modules. It is similar to
LoadExternalModule , except that, on Windows 95 and NT, external references in object
and library modules loaded from a DLL can be resolved using DLL symbols that are not
exported. On platforms other than Windows 95 and NT, LoadExternalModuleEx works
exactly like LoadExternalModule .

Parameters

Input pathName string Relative or absolute pathname of the module to
be loaded.

callingModuleHandle void
pointer

Usually, the module handle of the calling DLL.
You can use __CVIUserHInst. Zero
indicates the project or executable.

Return Value

moduleId integer ID of the loaded module.

Return Codes

Same as the return codes for LoadExternalModule .

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-38 © National Instruments Corporation

Using this Function

Refer to the function help for LoadExternalModule for detailed information on that
function.

When you call LoadExternalModule on an object or library module, external references
need to be resolved. They are resolved using symbols defined in the project or in object, library,
or DLL import library modules that have already been loaded using LoadExternalModule
(or LoadExternalModuleEx). This is true even if you call LoadExternalModule from
a DLL.

You may want to load an object or library module from a DLL and have the module link back to
symbols that you defined in (but did not export from) the DLL. You can do this using
LoadExternalModuleEx . You must specify the module handle of the DLL as the
callingModuleHandle parameter. You can do so by using the LabWindows/CVI pre-defined
variable __CVIUserHInst .

LoadExternalModuleEx first searches the global DLL symbols to resolve external
references. Any remaining unresolved references are resolved by searching the symbols defined
in the project or in object, library, or import library modules that have already been loaded using
LoadExternalModule (or LoadExternalModuleEx).

LoadExternalModuleEx expects the DLL to contain a table of symbols that can be used to
resolve references. If you create the DLL in LabWindows/CVI, the table is included
automatically. If you create the DLL using an external compiler, you must arrange for this table
to be included in the DLL. You can do this by creating an include file that includes all of the
symbols that need to be in this table. You can then use the External Compiler Support
command in the Build menu of the Project Window to create an object file containing the table.
You must include this object file in the external compiler project you use to create the DLL.

LoadExternalModuleEx acts identically to LoadExternalModule if either

• you pass zero for callingModuleHandle, or

• you pass __CVIUserHInst for callingModuleHandle, but you are calling the function
from a file that is in the project or your executable, rather than in a DLL, or

• you are not running in Windows 95 or NT.

You cannot load the same external module using two different calling module handles. The
function reports an error if you attempt to load the an external module when it is already loaded
under a different module handle.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-39 LabWindows/CVI 4.0 Addendum

ReadFromPhysicalMemoryEx
int status = ReadFromPhysicalMemoryEx (unsigned int physicalAddress,

void * destinationBuffer,
unsigned int numberOfBytes,
int bytesAtATime);

Note: This function is available only in the Windows version of LabWindows/CVI.

Purpose

This function copies the contents of a region of physical memory into the specified buffer. It can
copy the data in units of 1, 2, or 4 bytes at a time.

The function does not check if the memory actually exists. If it does, success is returned but no
data is read.

Parameters

Input physicalAddress unsigned
integer

The physical address to read from. There are
no restrictions on the address; it can be above
or below 1 MB.

destinationBuffer void pointer The buffer into which the physical memory is
copied.

numberOfBytes unsigned
integer

The number of bytes to copy from physical
memory.

bytesAtATime integer The unit size in which to copy the data. Can be
1, 2, or 4.

Return Value

status integer Indicates whether the function succeeded.

Return Codes

 1 Success.

 0 Failure reported by operating system, or low-level support driver not loaded, or
numberOfBytes is not a multiple of bytesAtATime, or invalid value for
bytesAtATime.

Parameter Discussion

numberOfBytes must be a multiple of bytesAtATime.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-40 © National Instruments Corporation

ReleaseExternalModule
int status = ReleaseExternalModule (int moduleID);

Purpose

Decreases the reference count for a module loaded using LoadExternalModule .

When LoadExternalModule is called successfully on a module, that module's reference
count is incremented by one. When you call ReleaseExternalModule , its reference count
is decremented by one.

If the reference count is decreased to zero, then the module ID is invalidated and you cannot
access the module through GetExternalModuleAddr or RunExternalModule . If, in
addition, the module file is not in the project and not loaded as an instrument, the external
module is removed from memory.

If you want to unload the module regardless of the reference count, call
UnloadExternalModule rather than ReleaseExternalModule . Use
ReleaseExternalModule when multiple calls may have been made to
LoadExternalModule on the same module and you do not want to unload the module in
case it is still being used by other parts of the application.

Parameter

Input moduleID integer The module ID returned by
LoadExternalModule .

Return Value

status integer Indicates the result of the operation.

Return Codes

> 0 Success, but the module was not unloaded. The value indicates the number of
remaining references.

 0 Success, and the module was unloaded.

 -5 The module cannot be unloaded because it is referenced by another external
module that is currently loaded.

 -9 Invalid module ID.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-41 LabWindows/CVI 4.0 Addendum

SetBreakOnLibraryErrors
int oldState = SetBreakOnLibraryErrors (int newState);

Purpose

When debugging is enabled and a National Instruments library function reports an error,
LabWindows/CVI can display a runtime error dialog box and suspend execution. You can use
this function to enable or disable this feature.

In general, it is best to use the Break on library errors checkbox in the Run Options command
of the Project window to enable or disable this feature. You should use this function only when
you want the temporarily disable the break on library errors feature around a segment of code.

This function does not affect the state of the Break on library errors checkbox in the Run
Options command of the Project window.

If debugging is disabled, this function has no effect. Run-time errors are never reported when
debugging is disabled.

Parameters

Input newState integer Pass a nonzero value to enable. Pass zero to disable.

Return Value

oldState integer Previous state of the break on library errors feature.

Return Codes

1 Was previously enabled.

0 Was previously disabled, or debugging is disabled.

Example

int oldValue;

oldValue = SetBreakOnLibraryErrors (0);

/* function calls that may legitimately return errors */

SetBreakOnLibraryErrors (oldValue);

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-42 © National Instruments Corporation

SetBreakOnProtectionErrors
int oldState = SetBreakOnProtectionErrors (int newState);

Purpose

If debugging is enabled, LabWindows/CVI uses information it gathers from compiling your
source code to make extensive run-time checks to protect your program. When it encounters a
protection error at run-time, LabWindows/CVI displays a dialog box and suspends execution.

Examples of protection errors are

• An invalid pointer value is dereferenced in source code.

• An attempt is made in source code to read or write beyond the end of an array.

• A function call is made in source code in which an array is smaller than is expected by the
function.

• Pointer arithmetic is performed in source code which generates an invalid address.

You can use this function to prevent LabWindows/CVI from displaying the dialog box and
suspending execution when it encounters a protection error. In general, it is better not to disable
the break on protection errors feature. Nevertheless, you may want to disable it temporarily
around a line of code for which LabWindows/CVI is erroneously reporting a protection error.

If debugging is disabled, this function has no effect. Run-time errors are not reported when
debugging is disabled.

Note: If an invalid memory access generates a processor exception, LabWindows/CVI reports
the error and terminates your program regardless of the debugging level or the state of
the break on protection errors feature.

Parameters

Input newState integer Pass a nonzero value to enable. Pass zero to
disable.

Return Value

oldState integer Previous state of the break on protection errors
feature.

Return Codes

1 Was previously enabled.

0 Was previously disabled, or debugging is disabled.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-43 LabWindows/CVI 4.0 Addendum

Example

int oldValue;

oldValue = SetBreakOnProtectionErrors (0);

/* the statement that erroneously reports an error */

SetBreakOnProtectionErrors (oldValue);

WriteToPhysicalMemoryEx
int status = WriteToPhysicalMemoryEx (unsigned int physicalAddress,

void * sourceBuffer,
unsigned int numberOfBytes,
int bytesAtATime);

Note: This function is available only in the Windows version of LabWindows/CVI.

Purpose

This function copies the contents of the specified buffer to a region of physical memory. It can
copy the data in units of 1, 2, or 4 bytes at a time.

The function does not check if the memory actually exists. If it does, success is returned but no
data is written.

Parameters

Input physicalAddress unsigned
integer

The physical address to write to. There are no
restrictions on the address; it can be above or
below 1 MB.

sourceBuffer void pointer The buffer from which the physical memory is
written.

numberOfBytes unsigned
integer

The number of bytes to copy to physical memory.

bytesAtATime integer The unit size in which to copy the data. Can be 1,
2, or 4.

Return Value

status integer Indicates whether the function succeeded.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-44 © National Instruments Corporation

Return Codes

 1 Success.

 0 Failure reported by operating system, or low-level support driver not loaded, or
numberOfBytes is not a multiple of bytesAtATime, or invalid value for
bytesAtATime.

Parameter Discussion

numberOfBytes must be a multiple of bytesAtATime.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-45 LabWindows/CVI 4.0 Addendum

Easy I/O for DAQ Library
This chapter describes the functions in the Easy I/O for DAQ Library. The Easy I/O for DAQ
Library Function Overview section contains general information about the functions, and
guidelines and restrictions you should know when using the Easy I/O for DAQ Library.

Easy I/O for DAQ Library Function Overview

The functions in the Easy I/O for DAQ Library make it easier to write simple DAQ programs
than if you use the Data Acquisition Library.

This library implements a subset of the functionality of the Data Acquisition Library, but it does
not use the same functions as the Data Acquisition Library. Read the advantages and limitations
listed here to see if the Easy I/O for DAQ Library is appropriate for your application.

You must have NI-DAQ for PC Compatibles installed to use the Easy I/O for DAQ library. The
Easy I/O for DAQ library has been tested using version 4.6.1 and later of NI-DAQ. It has not
been tested using previous versions of NI-DAQ.

The sample programs for the Easy I/O for DAQ library are located in the
cvi\samples\easyio directory. These sample programs are discussed in the EASYIO
section of cvi\samples.doc .

Note: It is recommended that you do not mix calls to the Data Acquisition Library with
similar types of calls to the Easy I/O for DAQ Library in the same application. For
example, do not mix analog input calls to the Data Acquisition Library with analog
input calls to the Easy I/O for DAQ Library in the same program.

Advantages of Using the Easy I/O for DAQ Library

If you want to scan multiple analog input channels on an MIO board using the Data Acquisition
Library, you have to programmatically build a channel list and a gain list before calling
SCAN_Op.

The Easy I/O for DAQ functions accept a channel string and upper and lower input limit
parameters so that you can easily perform a scan in one step.

In the Data Acquisition Library you may have to use Lab_ISCAN_Op, or SCAN_Op, or
MDAQ_Start depending on which DAQ device you are using. Also, if you are using SCXI,
there are a number of SCXI specific functions that must be called prior to actually acquiring
data.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-46 © National Instruments Corporation

The Easy I/O for DAQ functions are device independent which means that you can use the same
function on a Lab series board, an MIO board, an EISA-A2000 or SCXI module.

Limitations of Using the Easy I/O for DAQ Library

The Easy I/O for DAQ Library currently only works with Analog I/O, Counter/Timers, and
simple Digital I/O.

The Easy I/O for DAQ Library does not currently work with multirate scanning.

Easy I/O for DAQ Library Function Panels

The Easy I/O for DAQ Library function panels are grouped in a tree structure according to the
types of operations performed. The Easy I/O for DAQ Library function tree is in Table 4-1.

The first- and second-level bold headings in the function tree are names of the function classes.
Function classes are groups of related function panels. The third-level headings in plain text are
the names of individual function panels. Each Easy I/O for DAQ function panel generates a
function call. The actual function names are in bold italics in columns to the right.

Table 4-1. Easy I/O for DAQ Function Tree

Easy I/O for DAQ

Analog Input

AI Sample Channel AISampleChannel

AI Sample Channels AISampleChannels

AI Acquire Waveform(s) AIAcquireWaveforms

AI Acq. Triggered Waveform(s) AIAcquireTriggeredWaveforms

Asynchronous Acquisition

AI Start Acquisition AIStartAcquisition

AI Check Acquisition AICheckAcquisition

AI Read Acquisition AIReadAcquisition

AI Clear Acquisition AIClearAcquisition

Plot Last Waveform(s) to Popup PlotLastAIWaveformsPopup

continues

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-47 LabWindows/CVI 4.0 Addendum

Table 4-1. Easy I/O for DAQ Function Tree (Continued)

Analog Output

AO Update Channel AOUpdateChannel

AO Update Channels AOUpdateChannels

AO Generate Waveform(s) AOGenerateWaveforms

AO Clear Waveform(s) AOClearWaveforms

Digital Input/Output

Read From Digital Line ReadFromDigitalLine

Read From Digital Port ReadFromDigitalPort

Write To Digital Line WriteToDigitalLine

Write To Digital Port WriteToDigitalPort

Counter/Timer

Counter Measure Frequency CounterMeasureFrequency

Counter Event or Time Configure CounterEventOrTimeConfig

Continuous Pulse Gen Configure ContinuousPulseGenConfig

Delayed Pulse Gen Configure DelayedPulseGenConfig

Frequency Divider Configure FrequencyDividerConfig

Pulse Width or Period Meas Conf PulseWidthOrPeriodMeasConfig

Counter Start CounterStart

Counter Read CounterRead

Counter Stop CounterStop

I Counter Control ICounterControl

Miscellaneous

Get DAQ Error Description GetDAQErrorString

Get Number Of Channels GetNumChannels

Get Channel Indices GetChannelIndices

Get Channel Name From Index GetChannelNameFromIndex

Get AI Limits of Channel GetAILimitsOfChannel

Group By Channel GroupByChannel

• The Analog Input function class contains all of the functions that perform A/D conversions.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-48 © National Instruments Corporation

• The Asynchronous Acquisition function class contains all of the functions that perform
asynchronous (background) A/D conversions.

• The Analog Output function class contains all of the functions that perform D/A
conversions.

• The Digital Input/Output function class contains all of the functions that perform digital
input and output operations.

• The Counter/Timer function class contains all of the functions that perform counting and
timing operations.

• The Miscellaneous function class contains functions that do not fit into the other categories,
but are useful when writing programs using the Easy I/O for DAQ Library.

Device Numbers

The first parameter to most of the Easy I/O for DAQ functions is the device number of the DAQ
device you want to use for the given operation. After you have followed the installation and
configuration instructions in Chapter 1, Introduction to NI-DAQ, of the NI-DAQ User Manual
for PC Compatibles, the configuration utility displays the device number for each device you
have installed in the system. You can use the configuration utility to verify your device numbers.
You can use multiple DAQ devices in one application; to do so, simply pass the appropriate
device number to each function.

Channel String for Analog Input Functions

The second parameter to most of the analog input functions is the channel string containing the
analog input channels that are to be sampled.

Refer to Chapter 2, Hardware Overview, in your NI-DAQ User Manual for PC Compatibles to
determine exactly what channels are valid for your hardware.

The syntax for the Channel String is as follows:

• If you are using an MIO board, NEC-AI-16E-4, or NEC-AI-16XE-50, list the channels in
the order in which they are to be read, as in the following example:

"0,2,5" /* reads channels 0, 2, and 5 in that order */
"0:3" /* reads channels 0 through 3 inclusive */

• If you are using AMUX-64T boards:

You can address AMUX-64T channels when you attach one, two, or four AMUX-64T
boards to a plug-in data acquisition board.

Refer to Chapter 2, Hardware Overview, in your NI-DAQ User Manual for PC Compatibles
to determine how AMUX-64T channels are multiplexed onto onboard channels.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-49 LabWindows/CVI 4.0 Addendum

The onboard channel to which each block of four, eight, or 16 AMUX-64T channels are
multiplexed and the scanning order of the AMUX-64T channels are fixed. To specify a range
of AMUX-64T channels, therefore, you enter in the channel list the onboard channel into
which the range is multiplexed. For example, if you have one AMUX-64T:

"0" /* reads channels 0 through 3 on each AMUX-64T board in that order */

To sample a single AMUX-64T channel, you must also specify the number of the AMUX-
64T board, as in the following example:

"AM1!3" /* samples channel 3 on AMUX-64T board 1 */
"AM4!8" /* samples channel 8 on AMUX-64T board 4 */

• If you are using a Lab-PC+, DAQCard-500/700/1200, DAQPad-1200, PC-LPM-16:
These devices can only sample input channels in descending order, and you must end with
channel 0 ("3:0"). If you are using a Lab-PC+ or 1200 product in differential mode, you
must use even-numbered channels ("6,4,2,0").

• If you are using a DAQPad-MIO-16XE-50:
You can read the value of the cold junction compensation temperature sensor using the
following string as the channel:

"cjtemp"

• If you are using SCXI:
You can address SCXI channels when you attach one or more SCXI chassis to a plug-in data
acquisition board. If you operate a module in parallel mode, you can select a SCXI channel
either by specifying the corresponding onboard channels or by using the SCXI channel
syntax described below. If you operate the modules in multiplexed mode, you must use the
SCXI channel syntax.

The SCXI channel syntax is as follows:

• "OB1!SCx!MDy!a" /* channel a on the module in slot y of the chassis with
ID x is multiplexed into onboard channel 1 */

• "OB0!SCx!MDy!a:b" /* channels a through b inclusive on the module in slot
y of the chassis with ID x is multiplexed into onboard channel 0 */

SCXI channel ranges cannot cross module boundaries. SCXI channel ranges must always
increase in channel number.

The following examples of the SCXI channel syntax introduce the special SCXI channels:

• "OB0!SCx!MDy!MTEMP" /* The temperature sensor configured in MTEMP mode
on the multiplexed module in slot y of the chassis with ID x. */

• "OB1!SCx!MDy!DTEMP" /* The temperature sensor configured in DTEMP mode
on the parallel module in slot y of the chassis with ID x. */

• "OB0!SCx!MDy!CALGND" /* (SCXI-1100 and SCXI-1122 only) The grounded
amplifier of the module in slot y of the chassis with ID x. */

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-50 © National Instruments Corporation

• "OB0!SCx!MDy!SHUNT0" /* (SCXI-1121, SCXI-1122 and SCXI-1321 only) Channel
0 of the module in slot y of the chassis with ID x, with the shunt resistor
applied. */

• "OB0!SCx!MDy!SHUNT0:3" /* (SCXI-1121, SCXI-1122 and SCXI-1321 only) Channel
0 through 3 of the module in slot y of the chassis with ID x, with the
shunt resistors applied at each channel. */

Command Strings

You can use command strings within the Channel String to set per-channel limits and an
interchannel sample rate. For example,

"cmd hi 10.0 low -10.0; 7:4; cmd hi 5.0 low -5.0; 3:0"

specifies that channels 7 through 4 should be scanned with limits of +/- 10.0 volts and
channels 3 through 0 should be scanned with limits of +/- 5.0 volts. As you view the
Channel String from left to right, when a high/low limit command is encountered, those limits
are assigned to the following channels until the next high/low limit command is encountered.
The High Limit and Low Limit parameters to AISampleChannels are the initial high/low
limits. These parameters can be thought of as the left-most high/low limit command.

The following Channel String,

"cmd interChannelRate 1000.0; 0:3"

specifies that channels 0 through 3 should be sampled at 1000.0 Hz, in other words, there should
be 1/1000.0 = 1ms of delay between each channel. If you do not set an interchannel sample rate,
the channels are sampled as fast as possible for your hardware to achieve pseudo simultaneous
scanning.

The syntax for the command string can be described using the following guide:

• items enclosed in [] are optional

• <number> is an integer or real number

• <LF> is a line-feed character

• ;|<LF> means you may use either ; or <LF> to separate command strings from channel
strings

• ! may be used as an optional command separator

• spaces are optional

The syntax for the initial command string that appears before any channels are specified is:

"cmd [interChannelRate <number>[!]] [hi <number> [!]low <number>[!]];|<LF>"

The syntax for command strings that appear after any channels are specified is:

";|<LF> cmd hi <number>[!] low <number>[!] ;|<LF>"

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-51 LabWindows/CVI 4.0 Addendum

Channel String for Analog Output Functions

The second parameter to most of the analog output functions is the channel string containing the
analog output channels that are to be driven.

Refer to Chapter 2, Hardware Overview, in your NI-DAQ User Manual for PC Compatibles to
determine exactly what channels are valid for your hardware.

The syntax for the Channel String is as follows:

• If you are using a DAQ device without SCXI, list the channels to be driven, as in the
following example:

"0,2,5" /* drives channels 0, 2, and 5 */
"0:3" /* drives channels 0 through 3 inclusive */

• If you are using SCXI:
You can address SCXI channels when you attach one or more SCXI chassis to a plug-in data
acquisition board.

The SCXI channel syntax is as follows:

"SCx!MDy!a" /* channel a on the module in slot y of the chassis with ID x */
"SCx!MDy!a:b" /* channels a through b inclusive on the module in slot y of

the chassis with ID x */

SCXI channel ranges cannot cross module boundaries. SCXI channel ranges must always
increase in channel number.

Valid Counters for the Counter/Timer Functions

The second parameter to most of the counter/timer functions is the counter used for the
operation. The valid counters you can use depends on your hardware as shown in Table 4-2.

Table 4-2. Valid Counters

Device Type Valid Counters

DAQ-STC Devices 0 and 1

Am9513 MIO boards 1, 2, and 5

PC-TIO-10 1 through 10

EISA-A2000 2

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-52 © National Instruments Corporation

The Easy I/O for DAQ Function Reference

This section describes each function in the Easy I/O for DAQ Library. The function descriptions
are arranged alphabetically.

AIAcquireTriggeredWaveforms
short error = AIAcquireTriggeredWaveforms (short device, char channelString[] ,

long numberOfScans,
double scansPerSecond,
double highLimitVolts ,
double lowLimitVolts ,
double * actualScanRate,
unsigned short triggerType,
unsigned short edgeSlope,
double triggerLevelV ,
char triggerSource[] ,
long pretriggerScans,
double timeLimitsec,
short fillMode , double waveforms[]);

Purpose

This function performs a timed acquisition of voltage data from the analog channels specified in
the channelString. The acquisition does not start until the trigger conditions are satisfied.

If you have an E Series DAQ device, you can select Equivalent Time Sampling for the Trigger
Type to sample repetitive waveforms at up to 20 MHz. See the help for the Trigger Type
parameter for details.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-53 LabWindows/CVI 4.0 Addendum

Parameters

Input device short integer Assigned by configuration utility.

channelString string Analog input channels that are to be sampled.

numberOfScans long integer Number of scans to be acquired complete. One
scan involves sampling every channel in the
channelString once.

scansPerSecond double Number of scans performed per second. Any
particular channel to be scanned at this rate.

highLimitVolts double Maximum voltage to be measured.

lowLimitVolts double Minimum voltage to be measured.

triggerType unsigned
short integer

The trigger type.

edgeSlope unsigned
short integer

The edge/slope condition for triggering.

triggerLevelV double Voltage at which the trigger is to occur.

triggerSource string Specifies which channel is the trigger source.

pretriggerScans long integer Specifies the number of scans to retrieve before
the trigger point.

timeLimitsec double The maximum length of time in seconds to wait
for the data.

fillMode short integer Specifies whether the waveforms array are in
GROUP_BY_CHANNEL or GROUP_BY_SCAN
mode.

Output actualScanRate double The actual scan rate. The actual scan rate may
differ slightly from the scan rate you specified,
given the limitations of your particular DAQ
device.

waveforms double array Array containing the voltages acquired on the
channels specified in the channelString.

Return Value

error short integer Refer to error codes in Table 4-5.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-54 © National Instruments Corporation

Parameter Discussion

channelString is the analog input channels that are to be sampled. Refer to the Channel String
for Analog Input Functions subsection of the Easy I/O for DAQ Library Function Overview
section of this chapter for the syntax of this string.

triggerType is the trigger type. The trigger types are:

Hardware Analog Trigger: HW_ANALOG_TRIGGER
Digital Trigger A: DIGITAL_TRIGGER_A
Digital Triggers A & B: DIGITAL_TRIGGER_AB
Scan Clock Gating: SCAN_CLOCK_GATING
Software Analog Trigger: SW_ANALOG_TRIGGER
Equivalent Time Sampling ETS_TRIGGER

• If you choose Hardware or Software Analog Trigger, data is retrieved after the analog
triggering parameters have been satisfied. Be sure that the Trigger Source is one of the
channels listed in the channel string. Hardware triggering is more accurate than software
triggering, but it is not available on all boards.

• If you choose Digital Trigger A:

– If pretriggerScans is 0, the trigger starts the acquisition. For the MIO-16, connect the
digital trigger signal to the START TRIG input.

– If pretriggerScans is greater than 0, the trigger stops the acquisition after all posttrigger
data is acquired. For the MIO-16, connect the digital trigger signal to the STOP TRIG
input.

• If you choose Digital Trigger A & B:

– pretriggerScans must be greater than 0. A digital trigger starts the acquisition and a
digital trigger stops the acquisition after all posttrigger data is acquired.

– For the MIO-16, the START TRIG input starts the acquisition and the STOP TRIG input
stops the acquisition.

• If you choose Scan Clock Gating, an external signal gates the scan clock on and off. If the
scan clock gate becomes FALSE, the current scan completes, and the scan clock ceases
operation. When the scan clock gate becomes TRUE, the scan clock immediately begins
operation again.

• If you choose Equivalent Time Sampling: This is a mode in which the Equivalent Time
Sampling technique is used on an E Series DAQ device to achieve an effective acquisition
rate of up to 20 MHz.
– The signal that is being measured must be a periodic waveform.
– The trigger conditions must be satisfied or this function times out.
– Equivalent Time Sampling is the process of taking A/D conversions from a periodic

waveform at special points in time such that when the A/D conversions are placed side-
by-side, they represent the original waveform as if it had been sampled at a high
frequency.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-55 LabWindows/CVI 4.0 Addendum

For example, if the A/D conversions (represented by x 's) on the waveform shown below are
placed side-by-side, they represent one cycle of the waveform.

 _ _ _ x _ _ _
 / \ / \ x \ / \ / x / \ / \
 / \ x \ / \ / \ / \ / x / \
 x _/ _/ _/ _/ _/ _/ x_/

 x
 x x
 x x
 x x

Equivalent Time Sampling is accomplished in this function as follows:

1. Set a hardware analog trigger condition for measuring your waveform using the Edge/Slope,
Trigger Level, and Trigger. Source parameters of this function.

2. Whenever a hardware analog trigger occurs, the internal ATCOUT signal is strobed.

3. The ATCOUT signal is internally routed to the gate of GPCTR0, which is configured to
generate a pulse each time it receives a rising edge at it's gate input.

4. The output of GPCTR0 is internally routed to the data acquisition sample clock to control the
A/D conversion rate.

5. The very high effective scan rate is achieved through a pre-pulse delay that is programmed
into GPCTR0. This delay automatically increments before each GPCTR0 pulse so that the
A/D conversions occur at slightly larger intervals from the trigger condition as trigger
conditions occur over time.

6. Because the waveform being measured is periodic, A/D conversions that are at particular
intervals from trigger conditions over time can look the same as A/D conversions at
particular intervals from one unique trigger point in time.

In the following figure:

tn => the nth trigger condition

dn => delay between the nth trigger and the nth conversion

x => an A/D conversion

- - - => the trigger level

 _ _ _ x _ _ _
 / \ / \ x \ / \ / x / \ / \
 / \ x \ / \ / \ / \ / x / \
 x- - -\-/- - -\- /- - -\- /- - -\- /- - -\- /- - -\- /- - -x- /-
 __
 t0 t1 t2 t3 t4 t5 t6
 || |-| |--| |---| |----| |-----| |------|
 d0 d1 d2 d3 d4 d5 d6

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-56 © National Instruments Corporation

When the A/D conversions are placed side-by-side, they represent the original waveform as if it
had been sampled at a high frequency.

 x
 x x
 x x
 x x

edgeSlope specifies whether the trigger occurs when the trigger signal voltage is leading
(POSITIVE_SLOPE) or trailing (NEGATIVE_SLOPE).

triggerLevelV the voltage at which the trigger is to occur. triggerLevelV is valid only when the
Trigger Type is hardware or software analog trigger.

triggerSource specifies which channel is the trigger source. triggerSource must be one of the
channels listed in the channelString. Or if you pass "" or NUL, the first channel in the
channelString is used as the triggerSource. triggerSource is valid only when the Trigger Type
is hardware or software analog trigger.

timeLimitsec is the maximum length of time in seconds to wait for the data. If the time you set
expires, the function returns a timeout error (timeOutErr = -10800).

Other Values:

-2.0 disables the time limit.

Warning: This setting leaves your computer in a suspended state until the trigger
condition occurs.

-1.0 (default) lets the function calculate the timeout based on the acquisition rate and number
of scans requested.

fillMode specifies whether the waveforms array are grouped by channels or grouped by scans.
Consider the following examples:

• If you scan channels A through C and Number of Scans is 5, then the possible fill modes are:

GROUP_BY_CHANNEL
 A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5
 \----------/ \----------/ \----------/

or
GROUP_BY_SCAN
 A1 B1 C1 A2 B2 C2 A3 B3 C3 A4 B4 C4 A5 B5 C5
 \----/ \----/ \----/ \----/ \----/

• If you are to pass the array to a graph, you should acquire the data grouped by channel.

• If you are to pass the array to a strip chart, you should acquire the data grouped by scan.

• You can also acquire the data grouped by scan and later reorder it to be grouped by channel
using the GroupByChannel function.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-57 LabWindows/CVI 4.0 Addendum

waveforms is an array containing the voltages acquired on the channels specified in the
channelString. The acquired voltages are placed into the array in the order specified by
fillMode . This array must be declared as large as:

(number of channels) * (numberOfScans)

You can determine the number of channels using the GetNumChannels function.

AIAcquireWaveforms
short error = AIAcquireWaveforms (short device, char channelString[] ,

long numberOfScans, double scansPerSecond,
double highLimitVolts , double lowLimitVolts ,
double * actualScanRate, short fillMode ,
double waveforms[]);

Purpose

This function performs a timed acquisition of voltage data from the analog channels specified in
the channelString.

Parameters

Input device short
integer

Assigned by configuration utility.

channelString string Analog input channels that are to be sampled.

numberOfScans long
integer

Number of scans to be acquired. One scan involves
sampling every channel in the channelString once.

scansPerSecond double Number of scans performed per second. Any
particular channel is scanned at this rate.

highLimitVolts double Maximum voltage to be measured.

lowLimitVolts double Minimum voltage to be measured.

fillMode short
integer

Specifies one of the following modes for the
waveforms array: GROUP_BY_CHANNEL or
GROUP_BY_SCAN.

Output actualScanRate double The actual scan rate may differ slightly from the scan
rate you specified, given the limitations of your
particular DAQ device.

waveforms double
array

Array containing the voltages acquired on the
channels specified in the channelString.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-58 © National Instruments Corporation

Return Value

error short
integer

Refer to error codes in Table 4-5.

Parameter Discussion

channelString is the analog input channels that are to be sampled. Refer to the Channel String
for Analog Input Functions subsection of the Easy I/O for DAQ Library Function Overview
section of this chapter for the syntax of this string.

fillMode specifies whether the waveforms array are grouped by channels or grouped by scans.
Consider the following examples:

• If you scan channels A through C and Number of Scans is 5, then the possible fill modes are:

GROUP_BY_CHANNEL
 A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 C5
 \----------/ \----------/ \----------/

or

GROUP_BY_SCAN
 A1 B1 C1 A2 B2 C2 A3 B3 C3 A4 B4 C4 A5 B5 C5
 \----/ \----/ \----/ \----/ \----/

• If you are to pass the array to a graph, you should acquire the data grouped by channel.

• If you are to pass the array to a strip chart, you should acquire the data grouped by scan.

• You can also acquire the data grouped by scan and later reorder it to be grouped by channel
using the GroupByChannel function.

waveforms is an array containing the voltages acquired on the channels specified in the
channelString. The acquired voltages is placed into the array in the order specified by fillMode .
This array must be declared as large as:

(number of channels) * (numberOfScans)

You can determine number of channels using the function GetNumChannels .

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-59 LabWindows/CVI 4.0 Addendum

AICheckAcquisition
short error = AICheckAcquisition (unsigned long taskID,

unsigned long * scanBacklog);

Purpose

This function can be used to determine the backlog of scans that have been acquired into the
circular buffer but have not been read using AIReadAcquisition .

If AIReadAcquisition is called with read mode set to LATEST_MODE, scanBacklog is
reset to zero.

Parameters

Input taskID unsigned
long integer

The task ID that was returned from
AIStartAcquisition .

Output scanBacklog unsigned
long integer

Returns the backlog of scans that have been acquired
into the circular buffer but have not been read using
AIReadAcquisition .

Return Value

error short
integer

Refer to error codes in Table 4-5.

AIClearAcquisition
short error = AIClearAcquisition (unsigned long taskID);

Purpose

This function clears the current asynchronous acquisition that was started by
AIStartAcquisition .

Parameters

Input taskID unsigned
long integer

The task ID that was returned from
AIStartAcquisition .

Return Value

error short integer Refer to error codes in Table 4-5.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-60 © National Instruments Corporation

AIReadAcquisition
short error = AIReadAcquisition (unsigned long taskID, long scanstoRead,

unsigned short readMode,
unsigned long * scanBacklog,
short fillMode , double waveforms[]);

Purpose

This function reads the specified number of scans from the internal circular buffer established by
AIStartAcquisition .

If the specified number of scans is not available in the buffer, the function waits until the scans
are available. You can call AICheckAcquisition before calling AIReadAcquisition
to determine how many scans are available.

Parameters

Input taskID unsigned long
integer

The task ID that was returned from
AIStartAcquisition .

scanstoRead long integer The number of scans that are read from the internal
circular buffer.

readMode unsigned
short integer

Specifies whether scans are read from the circular
buffer in CONSECUTIVE_MODE or
LATEST_MODE.

fillMode short integer Specifies one of the following modes for the
waveforms array: GROUP_BY_CHANNEL or
GROUP_BY_SCAN.

Output scanBacklog unsigned long
integer

Returns the backlog of scans that have been acquired
into the circular buffer but have not been read using
AIReadAcquisition .

waveforms double array Array containing the voltages acquired on the
channels specified in the channelString.

Return Value

error short integer Refer to error codes in Table 4-5.

Parameter Discussion

readMode specifies whether scans are read from the circular buffer in CONSECUTIVE_MODE
or LATEST_MODE. In CONSECUTIVE_MODE scans are read from the internal circular buffer
starting from the last scan that was read. Using this mode, you are guaranteed that you will not

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-61 LabWindows/CVI 4.0 Addendum

lose data unless an error occurs. In LATEST_MODE the most recently acquired n scans are read
from the internal circular buffer, where n is Scans to Read. Calling AIReadAcquisition in
this mode resets the scanBacklog to zero.

scanBacklog returns the backlog of scans that have been acquired into the circular buffer but
have not been read using AIReadAcquisition . If AIReadAcquisition is called in
"latest" read mode, the scan backlog is reset to zero. You can also call
AICheckAcquisition to determine the scan backlog before calling
AIReadAcquisition .

waveforms is an array containing the voltages acquired on the channels specified in the
channelString. The acquired voltages are placed into the array in the order specified by
fillMode . This array must be declared as large as:

(number of channels) * (scanstoRead)

You can determine the number of channels by using the function GetNumChannels .

AISampleChannel
short error = AISampleChannel (short device, char singleChannel[] ,

double highLimitVolts , double lowLimitVolts ,
double * voltage);

Purpose

This function acquires a single voltage from a single analog input channel.

Parameters

Input device short integer Assigned by configuration utility.

singleChannel string The analog input channel that is to be sampled.

highLimitVolts double Maximum voltage to be measured.

lowLimitVolts double Minimum voltage to be measured.

Output voltage double
(passed by
reference)

Returns the measured voltage.

Return Value

error short integer Refer to error codes in Table 4-5.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-62 © National Instruments Corporation

Parameter Discussion

singleChannel is the analog input channel that is to be sampled. See the Channel String for
Analog Input Functions subsection of the Easy I/O for DAQ Library Function Overview section
in this chapter for the syntax of this string.

AISampleChannels
short error = AISampleChannels (short device, char channelString[] ,

double highLimitVolts , double lowLimitVolts ,
double voltageArray[]);

Purpose

This function performs a single scan on a set of analog input channels.

Parameters

Input device short
integer

Assigned by configuration utility.

channelString string Analog input channels that are to be sampled.

highLimitVolts double Maximum voltage to be measured.

lowLimitVolts double Minimum voltage to be measured.

Output voltageArray double
array

Array containing the voltages acquired on the
channels specified in the channelString.

Return Value

error short
integer

Refer to error codes in Table 4-5.

Parameter Discussion

channelString is the analog input channels that are to be sampled. Refer to the Channel String
for Analog Input Functions subsection of the Easy I/O for DAQ Library Function Overview
section of this chapter for the syntax of this string.

voltageArray is an array containing the voltages acquired on the channels specified in the
channelString. The acquired voltages are placed into the array in the order specified in the
channelString. This array must be declared as large as the number of channels specified in the
channelString.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-63 LabWindows/CVI 4.0 Addendum

AIStartAcquisition
short error = AIStartAcquisition (short device, char channelString[] ,

int bufferSize, double scansPerSecond,
double highLimitVolts , double lowLimitVolts ,
double * actualScanRate,
unsigned long * taskID);

Purpose

This function starts a continuous asynchronous acquisition on the analog input channels
specified in the channelString. Data is acquired into an internal circular buffer. Use
AIReadAcquisition to retrieve scans from the internal buffer.

Parameters

Input device short integer Assigned by configuration utility.

channelString string Analog input channels that are to be sampled.

bufferSize integer The size of the internal circular buffer in scans.

scansPerSecond double Number of scans performed per second. Any
particular channel is scanned at this rate.

highLimitVolts double Maximum voltage to be measured.

lowLimitVolts double Minimum voltage to be measured.

Output actualScanRate double The actual scan rate may differ slightly from the
scan rate you specified, given the limitations of
your particular DAQ device.

taskID unsigned
long integer

An identifier for the asynchronous acquisition.

Return Value

error short integer Refer to error codes in Table 4-5.

Parameter Discussion

channelString is the analog input channels that are to be sampled. Refer to the Channel String
for Analog Input Functions subsection of the Easy I/O for DAQ Library Function Overview
section of this chapter for the syntax of this string.

taskID is an identifier for the asynchronous acquisition that must be passed to

AICheckAcquisition
AIReadAcquisition
AIClearAcquisition

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-64 © National Instruments Corporation

AOClearWaveforms
short error = AOClearWaveforms (unsigned long taskID);

Purpose

This function clears the waveforms generated by AOGenerateWaveforms when you passed
0 for the iterations parameter.

Parameters

Input taskID unsigned
long integer

The task ID that was returned from
AOGenerateWaveforms .

Return Value

error short integer Refer to error codes in Table 4-5.

AOGenerateWaveforms
short error = AOGenerateWaveforms (short device, char channelString[] ,

double updatesPerSecond,
int updatesPerChannel, int iterations,
double waveforms[] ,
unsigned long * taskID);

Purpose

This function generates a timed waveform of voltage data on the analog output channels
specified in the channelString.

Parameters

Input device short integer Assigned by configuration utility.

channelString string The analog output channels to which the
voltages are applied.

updatesPerSecond double The number of updates that are performed per
second. Any particular channel is updated at
this rate.

updatesPerChannel integer The number of D/A conversions that compose
a waveform for a particular channel.

iterations integer The number of waveform iterations that are
performed before the operation is complete; 0
= continuous.

continues

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-65 LabWindows/CVI 4.0 Addendum

Parameters (Continued)

Output waveforms double array The voltages to be applied to the channels
specified in the channelString.

taskID unsigned
long integer

Returns an identifier for the waveform
generation. If you pass 0 as the iterations
parameter you need to pass the taskID to
AOClearWaveforms to clear the waveform
generation.

Return Value

error short integer Refer to error codes in Table 4-5.

Parameter Discussion

channelString is the analog output channels to which the voltages are applied. Refer to the
Channel String for Analog Output Functions subsection of the Easy I/O for DAQ Library
Function Overview section of this chapter for the syntax of this string.

updatesPerChannel is the number of D/A conversions that compose a waveform for a
particular channel. If updatesPerChannel is 10, then each waveform is composed of 10
elements from the waveforms array.

iterations is the number of waveform iterations that are performed before the operation is
complete. If you pass 0, the waveform(s) are generated continuously and you need to call
AOClearWaveforms to clear waveform generation.

waveforms is the array containing the voltages to be applied to the channels specified in the
channelString. The voltages are applied to the analog output channels in the order specified in
the channelString. For example, if the channelString is

"0:3,5",

the array should contain the voltages in the following order:

waveforms[0] /* the 1st update on channel 0 */
waveforms[1] /* the 1st update on channel 1 */
waveforms[2] /* the 1st update on channel 2 */
waveforms[3] /* the 1st update on channel 3 */
waveforms[4] /* the 1st update on channel 5 */
waveforms[5] /* the 2nd update on channel 0 */
waveforms[6] /* the 2nd update on channel 1 */
waveforms[7] /* the 2nd update on channel 2 */
waveforms[8] /* the 2nd update on channel 3 */
waveforms[9] /* the 2nd update on channel 5 */
.
.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-66 © National Instruments Corporation

.
waveforms[n-5] /* the last update on channel 0 */
waveforms[n-4] /* the last update on channel 1 */
waveforms[n-3] /* the last update on channel 2 */
waveforms[n-2] /* the last update on channel 3 */
waveforms[n-1] /* the last update on channel 5 */

AOUpdateChannel
short error = AOUpdateChannel (short device, char singleChannel[] ,

double voltage);

Purpose

This function applies a specified voltage to a single analog output channel.

Parameters

Input device short integer Assigned by configuration utility.

singleChannel string The analog output channel to which the
voltage are applied.

voltage double The voltage that is applied to the analog
output channel.

Return Value

error short integer Refer to error codes in Table 4-5.

Parameter Discussion

singleChannel is the analog output channel to which the voltage are applied. Refer to the
Channel String for Analog Output Functions subsection of the Easy I/O for DAQ Library
Function Overview section of this chapter for the syntax of this string.

AOUpdateChannels

short AOUpdateChannels (short device, char channelString[] ,
double voltageArray[]);

Purpose

This function applies specified voltages to the analog output channel specified in the
channelString.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-67 LabWindows/CVI 4.0 Addendum

Parameters

Input device short integer Assigned by configuration utility.

channelString string The analog output channels to which the voltages
are applied.

voltageArray double array The voltages that are applied to the specified analog
output channels.

Return Value

error short integer Refer to error codes in Table 4-5.

Parameter Discussion

channelString is the analog output channels to which the voltages are applied. Refer to the
Channel String for Analog Output Functions subsection of the Easy I/O for DAQ Library
Function Overview section of this chapter for the syntax of this string.

voltageArray is the voltages that are applied to the specified analog output channels. This array
should contain the voltages to be applied to the analog output channels in the order that is
specified in the channelString. For example, if the channelString contains:

"0,1,3"

then

voltage[0] == 1.2; /* 1.2 volts applied to channel 0 */
voltage[1] == 2.4; /* 2.4 volts applied to channel 1 */
voltage[2] == 3.6; /* 3.6 volts applied to channel 3 */

ContinuousPulseGenConfig
short error = ContinuousPulseGenConfig (short device, char counter[] ,

double frequency, double dutyCycle,
unsigned short gateMode,
unsigned short pulsePolarity,
double * actualFrequency,
double * actualDutyCycle,
unsigned long * taskID);

Purpose

Configures a counter to generate a continuous TTL pulse train on its OUT pin.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-68 © National Instruments Corporation

The signal is created by repeatedly decrementing the counter twice, first for the delay to the
pulse (phase 1), then for the pulse itself (phase 2). The function selects the highest resolution
timebase to achieve the desired characteristics.

You can also call the CounterStart function to gate or trigger the operation with a signal on
the counter's GATE pin.

Parameters

Input device short
integer

Assigned by configuration utility.

counter string The counter to be used for the counting operation.

frequency double The desired repetition rate of the continuous pulse
train.

dutyCycle double The desired ratio of the duration of the pulse phase
(phase 2) to the period (phase 1 + phase 2).

gateMode unsigned
short
integer

Specifies how the signal on the counter's GATE pin
is used.

pulsePolarity unsigned
short
integer

The polarity of phase 2 of each cycle.

Output actualFrequency double The achieved frequency based on the resolution and
range of your hardware.

actualDutyCycle double The achieved duty cycle based on the resolution
and range of your hardware.

taskID unsigned
long
integer

The reference number assigned to this operation.
You pass taskID to CounterStart ,
CounterRead , and CounterStop .

Return Value

error short
integer

Refer to error codes in Table 4-5.

Parameter Discussion

counter is the counter to be used for the counting operation. The valid counters are shown in
Table 4-2, which is found in the Valid Counters for the Counter/Timer Functions subsection of
the Easy I/O for DAQ Library Function Overview section of this chapter.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-69 LabWindows/CVI 4.0 Addendum

dutyCycle is the desired ratio of the duration of the pulse phase (phase 2) to the period (phase 1
+ phase 2). The default of 0.5 generates a square wave.

• If dutyCycle = 0.0, the function computes the closest achievable duty cycle using a
minimum pulse phase (phase 2) of three timebase cycles.

• If dutyCycle = 1.0, the function computes the achievable duty cycle using a minimum delay
phase (phase 1) of three timebase cycles.

• A duty cycle very close to 0.0 or 1.0 may not be possible.

gateMode specifies how the signal on the counter's GATE pin is used. The options are:

• UNGATED_SOFTWARE_START—ignore the gate signal and start when CounterStart is
called.

• COUNT_WHILE_GATE_HIGH—count while the gate signal is TTL high after
CounterStart is called.

• COUNT_WHILE_GATE_LOW—count while the gate signal is TTL low after
CounterStart is called.

• START_COUNTING_ON_RISING_EDGE—start counting on the rising edge of the TTL
gate signal after CounterStart is called.

• START_COUNTING_ON_FALLING_EDGE—start counting on the falling edge of the TTL
gate signal after CounterStart is called.

pulsePolarity is the polarity of phase 2 of each cycle. The options are:

• POSITIVE_POLARITY—the delay (phase 1) is a low TTL level and the pulse (phase 2) is
a high level.

• NEGATIVE_POLARITY—the delay (phase 1) is a high TTL level and the pulse (phase 2) is
a low level.

CounterEventOrTimeConfig
short error = CounterEventOrTimeConfig (short device, char counter[] ,

unsigned short counterSize,
double sourceTimebase,
unsigned short countLimitAction ,
short sourceEdge,
unsigned short gateMode,
unsigned long * taskID);

Purpose

Configures one or two counters to count edges in the signal on the specified counter's SOURCE
pin or the number of cycles of a specified internal timebase signal.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-70 © National Instruments Corporation

When you use this function with the internal timebase and in conjunction with CounterStart
and CounterRead your program can make more precise timing measurements than with the
Timer function.

You can also call the CounterStart function to gate or trigger the operation with a signal on
the counter's GATE pin.

Parameters

Input device short
integer

Assigned by configuration utility.

counter string The counter to be used for the counting
operation.

counterSize unsigned
short
integer

Determines the size of the counter used to
perform the operation.

sourceTimebase double USE_COUNTER_SOURCE: count TTL edges at
counter’s SOURCE pin; or supply a valid
internal timebase frequency to count the TTL
edges of an internal clock.

countLimitAction unsigned
short
integer

The action to take when the counter reaches
terminal count.

sourceEdge short
integer

The edge of the counter source or timebase signal
on which it increments.

gateMode unsigned
short
integer

Specifies how the signal on the counter's GATE
pin is used.

Output taskID unsigned
long
integer

The reference number assigned for the counter
reserved for this operation. You pass taskID to
CounterStart , CounterRead , and
CounterStop .

Return Value

error short
integer

Refer to error codes in Table 4-5.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-71 LabWindows/CVI 4.0 Addendum

Parameter Discussion

counter is the counter to be used for the counting operation. The valid counters are shown in
Table 4-2, which is found in the Valid Counters for the Counter/Timer Functions subsection of
the Easy I/O for DAQ Library Function Overview section of this chapter.

counterSize determines the size of the counter used to perform the operation.

• For a device with DAQ-STC counters, counterSize must be ONE_COUNTER (24-bit).

• For a device with Am9513 counters, counterSize can be ONE_COUNTER (16-bit) or
TWO_COUNTERS (32-bit).

• If you use TWO_COUNTERS, counter+1 are cascaded with the specified counter. Counter+1
is defined as shown in Table 4-3.

Table 4-3. Definition of Am 9513: Counter +1

counter counter+1

1 2

2 3

3 4

4 5

5 1

6 7

7 8

8 9

9 10

10 6

sourceTimebase determines whether the counter uses its SOURCE pin or an internal timebase
as its signal source. Pass USE_COUNTER_SOURCE to count TTL edges at counter’s SOURCE
pin, or pass a valid internal timebase frequency to count the TTL edges of an internal clock.

Valid internal timebase frequencies are:

1000000 (Am9513)
100000 (Am9513)
10000 (Am9513)
1000 (Am9513)
100 (Am9513)
20000000 (DAQ-STC)
100000 (DAQ-STC)

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-72 © National Instruments Corporation

countLimitAction is the action to take when the counter reaches terminal count. The parameter
accepts the following attributes:

• COUNT_UNTIL_TC—count until terminal count, and set the overflow status when it is
reached. This mode is not available on the DAQ-STC.

• COUNT_CONTINUOUSLY—count continuously. The Am9513 does not set the overflow
status at terminal count, but the DAQ-STC does.

sourceEdge is the edge of the counter source or timebase signal on which it increments, and this
parameter accepts the following attributes:

• COUNT_ON_RISING_EDGE

• COUNT_ON_FALLING_EDGE

gateMode specifies how the signal on the counter's GATE pin is used. The options are:

• UNGATED_SOFTWARE_START—ignore the gate signal and start when CounterStart is
called.

• COUNT_WHILE_GATE_HIGH—count while the gate signal is TTL high after
CounterStart is called.

• COUNT_WHILE_GATE_LOW—count while the gate signal is TTL low after
CounterStart is called.

• START_COUNTING_ON_RISING_EDGE—start counting on the rising edge of the TTL
gate signal after CounterStart is called.

• START_COUNTING_ON_FALLING_EDGE—start counting on the falling edge of the TTL
gate signal after CounterStart is called.

CounterMeasureFrequency
short error = CounterMeasureFrequency (short device, char counter[] ,

unsigned short counterSize,
double gateWidthSampleTimeinSec,
double maxDelayBeforeGateSec,
unsigned short counterMinus1GateMode,
double * actualGateWidthSec,
short * overflow, short * valid,
short * timeout, double * frequency);

Purpose

Measures the frequency of a TTL signal on the specified counter's SOURCE pin by counting
rising edges of the signal during a specified period of time. In addition to this connection, you

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-73 LabWindows/CVI 4.0 Addendum

must also wire the counter's GATE pin to the OUT pin of counter-1. For a specified Counter,
Counter-1 and Counter+1 are defined as shown in Table 4-4.

Table 4-4. Adjacent Counters

Am9513

counter-1 counter counter+1

5 1 2

1 2 3

2 3 4

3 4 5

4 5 1

10 6 7

6 7 8

7 8 9

8 9 10

9 10 6

DAQ-STC

counter-1 counter counter+1

1 0 1

0 1 0

This function is useful for relatively high frequency signals when many cycles of the signal
occur during the timing period. Use the PulseWidthOrPeriodMeasConfig function for
relatively low frequency signals. Keep in mind that

period = 1/frequency

This function configures the specified counter and counter+1 (optional) as event counters to
count rising edges of the signal on counter's SOURCE pin. The function also configures counter-
1 to generate a minimum-delayed pulse to gate the event counter, starts the event counter and
then the gate counter, waits the expected gate period, and then reads the gate counter until its
output state is low. Next the function reads the event counter and computes the signal frequency
(number of events/actual gate pulse width) and stops the counters. You can optionally gate or
trigger the operation with a signal on counter-1's GATE pin.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-74 © National Instruments Corporation

Parameters

Input device short
integer

Assigned by configuration utility.

counter string The counter to be used for the counting
operation.

counterSize unsigned
short
integer

Determines the size of the counter used to
perform the operation: ONE_COUNTER or
TWO_COUNTERS.

gateWidthSampleTimeinSec double The desired length of the pulse used to gate
the signal. The lower the signal frequency,
the longer the Gate Width must be.

maxDelayBeforeGateSec double The maximum expected delay between the
time the function is called and the start of
the gating pulse. If the gate signal does not
start in this time, a timeout occurs.

counterMinus1GateMode unsigned
short
integer

The gate mode for counter-1.

Output actualGateWidthSec double The length in seconds of the gating pulse
that is used.

overflow short
integer

1 = counter rolled past terminal count; 0 =
counter did not roll past terminal count. If
overflow is 1, the value of frequency is
inaccurate.

valid short
integer

Set to 1 if the measurement completes
without a counter overflow. A timeout and
a valid measurement may occur at the
same time. A timeout does not produce an
error.

timeout short
integer

Set to 1 if the time limit expires during the
function call. A timeout and a valid
measurement may occur at the same time.
A timeout does not produce an error.

frequency double The frequency of the signal. It is computed
as the (number of rising edges) /
(actualGateWidthSec).

Return Value

error short
integer

Refer to error codes in Table 4-5.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-75 LabWindows/CVI 4.0 Addendum

Parameter Discussion

counter is the counter to be used for the counting operation. The valid counters are shown in
Table 4-2, which is found in the Valid Counters for the Counter/Timer Functions subsection of
the Easy I/O for DAQ Library Function Overview section of this chapter.

counterSize determines the size of the counter used to perform the operation.

• For a device with DAQ-STC counters, counterSize must be ONE_COUNTER (24-bit).

• For a device with Am9513 counters, counterSize can be ONE_COUNTER (16-bit) or
TWO_COUNTERS (32-bit).

• If you use TWO_COUNTERS, counter+1 are cascaded with the specified counter. counter+1
is defined as shown in Table 4-3 in the function description for
CounterEventOrTimeConfig .

counterMinus1GateMode is the gate mode for counter-1. The possible values are:

• UNGATED_SOFTWARE_START

• COUNT_WHILE_GATE_HIGH

• COUNT_WHILE_GATE_LOW

• START_COUNTING_ON_RISING_EDGE

counter-1 is used to gate counter so that rising edges are counted over a precise sample time.
For a specified counter, counter-1 is defined as shown in Table 4-4.

CounterRead
short error = CounterRead (unsigned long taskID, short * overflow,

long * count);

Purpose

Reads the counter identified by taskID.

Parameters

Input taskID unsigned long
integer

The reference number assigned to the counting
operation by one of the counter configuration
functions.

Output overflow short integer 1 = counter rolled past terminal count; 0 = counter
did not roll past terminal count.

count long integer The value of the counter at the time it is read.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-76 © National Instruments Corporation

Return Value

error short integer Refer to error codes in Table 4-5.

Parameter Discussion

overflow indicates whether the counter rolled over past its terminal count. If overflow is 1, the
value of count is inaccurate.

CounterStart
short error = CounterStart (unsigned long taskID);

Purpose

Starts the counter identified by taskID.

Parameters

Input taskID unsigned
long integer

The reference number assigned to the counting
operation by one of the counter configuration
functions.

Return Value

error short integer Refer to error codes in Table 4-5.

CounterStop
short error = CounterStop (unsigned long taskID);

Purpose

Stops a count operation immediately.

Parameters

Input taskID unsigned
long integer

The reference number assigned to the
counting operation by one of the counter
configuration functions.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-77 LabWindows/CVI 4.0 Addendum

Return Value

error short integer Refer to error codes in Table 4-5.

DelayedPulseGenConfig
short error = DelayedPulseGenConfig (short device, char counter[] ,

double pulseDelay, double pulseWidth,
unsigned short timebaseSource,
unsigned short gateMode
unsigned short pulsePolarity,
double * actualDelay,
double * actualPulseWidth,
unsigned long * taskID);

Purpose

Configures a counter to generate a delayed TTL pulse or triggered pulse train on its OUT pin.

The signal is created by decrementing the counter twice, first for the delay to the pulse (phase 1),
then for the pulse itself (phase 2). The function selects the highest resolution timebase to achieve
the desired characteristics.

You can also call the CounterStart function to gate or trigger the operation with a signal on
the counter's GATE pin.

Parameters

Input device short integer Assigned by configuration utility.

counter string The counter to be used for the counting
operation.

pulseDelay double The desired duration of the delay (phase 1)
before the pulse.

pulseWidth double The desired duration of the pulse (phase 2)
after the delay.

timebaseSource unsigned short
integer

The signal that causes the counter to count.

gateMode unsigned short
integer

Specifies how the signal on the counter's
GATE pin is used.

pulsePolarity unsigned short
integer

The polarity of phase 2 of each cycle.

continues

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-78 © National Instruments Corporation

Parameters (Continued)

Output actualDelay double The achieved delay based on the resolution
and range of your hardware.

actualPulseWidth double The achieved pulse width based on the
resolution and range of your hardware.

taskID unsigned long
integer

The reference number assigned to this
operation. You pass taskID to
CounterStart , CounterRead , and
CounterStop .

Return Value

error short integer Refer to error codes in Table 4-5.

Parameter Discussion

counter is the counter to be used for the counting operation. The valid counters are shown in
Table 4-2, which is found in the Valid Counters for the Counter/Timer Functions subsection of
the Easy I/O for DAQ Library Function Overview section of this chapter.

pulseDelay is the desired duration of the delay (phase 1) before the pulse. This parameter
accepts the following attributes:

• The unit is seconds if timebaseSource is USE_INTERNAL_TIMEBASE and cycles if
timebaseSource is USE_COUNTER_SOURCE.

• If pulseDelay = 0.0 and timebaseSource is internal, the function selects a minimum delay of
three cycles of the timebase used.

• pulseWidth is the desired duration of the pulse (phase 2) after the delay

• The unit is seconds if timebaseSource is USE_INTERNAL_TIMEBASE and cycles if
timebaseSource is USE_COUNTER_SOURCE.

• If pulseDelay = 0.0 and timebaseSource is internal, the function selects a minimum delay of
three cycles of the timebase used.

timebaseSource is the signal that causes the counter to count. This parameter accepts the
following attributes:

• USE_INTERNAL_TIMEBASE—An internal timebase is selected based on the pulse delay
and width, in units of seconds.

• USE_COUNTER_SOURCE—The signal on the counter's SOURCE pin is used and the units
of pulse delay and width are cycles of that signal.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-79 LabWindows/CVI 4.0 Addendum

gateMode specifies how the signal on the counter's GATE pin is used. This parameter accepts
the following attributes:

• UNGATED_SOFTWARE_START—ignore the gate signal and start when CounterStart is
called.

• COUNT_WHILE_GATE_HIGH—count while the gate signal is TTL high after
CounterStart is called.

• COUNT_WHILE_GATE_LOW—count while the gate signal is TTL low after
CounterStart is called.

• START_COUNTING_ON_RISING_EDGE—start counting on the rising edge of the TTL
gate signal after CounterStart is called.

• START_COUNTING_ON_FALLING_EDGE—start counting on the falling edge of the TTL
gate signal after CounterStart is called.

• RESTART_ON_EACH_RISING_EDGE—restart counting on each rising edge of the TTL
gate signal after CounterStart is called.

• RESTART_ON_EACH_FALLING_EDGE—restart counting on each falling edge of the TTL
gate signal after CounterStart is called.

pulsePolarity is the polarity of phase 2 of each cycle. This parameter accepts the following
attributes:

• POSITIVE_POLARITY—the delay (phase 1) is a low TTL level and the pulse (phase 2) is
a high level.

• NEGATIVE_POLARITY—the delay (phase 1) is a high TTL level and the pulse (phase 2) is
a low level.

FrequencyDividerConfig
short error = FrequencyDividerConfig (short device, char counter[] ,

double sourceTimebase,
double timebaseDivisor,
unsigned short gateMode,
unsigned short outputBehavior,
short sourceEdge, unsigned long * taskID);

Purpose

This function configures the specified counter to count the number of signal transitions on its
SOURCE pin or on an internal timebase signal, and to strobe or toggle the signal on its OUT
pin.

To divide an external TTL signal, connect it to counter's SOURCE pin, and set the
sourceTimebase parameter to USE_COUNTER_SOURCE.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-80 © National Instruments Corporation

To divide an internal timebase signal, set the sourceTimebase parameter to a desired valid
frequency.

Set the timebaseDivisor to the desired value. For a value of N and a pulsed output, an output
pulse equal to the period of the source or timebase signal appears on counter's OUT pin once
each N cycles of that signal. For a toggled output, the output toggles after each N cycles. The
toggled output frequency is thus half that of the pulsed output, in other words,

pulsedFrequency = sourceFrequency/N

and

toggledFrequency = sourceFrequency/2*N

thus, if N=3, the OUT pin would generate pulses as follows:

 _ _ _ _ _ _ _ _ _ _ _ _
source _| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |
 ___ ___ ___ ___
pulsed _| |_______| |_______| |_______| |______
 ___________ ___________
toggled _| |___________| |_________

If gateMode is not UNGATED_SOFTWARE_START, connect your gate signal to counter's
GATE pin.

Parameters

Input device short integer Assigned by configuration utility.

counter string The counter to be used for the counting
operation.

sourceTimebase double USE_COUNTER_SOURCE: count TTL edges at
counter’s SOURCE pin; or supply a valid
internal timebase frequency to count the TTL
edges of an internal clock.

timebaseDivisor double The source frequency divisor.

gateMode unsigned
short integer

Specifies how the signal on the counter's GATE
pin is used.

outputBehavior unsigned
short integer

The behavior of the output signal when counter
reaches terminal count.

sourceEdge short integer The edge of the counter source or timebase
signal on which it decrements:
COUNT_ON_RISING_EDGE or
COUNT_ON_FALLING_EDGE.

Output taskID unsigned
long integer

The reference number assigned to this operation.
You pass taskID to CounterStart ,
CounterRead , and CounterStop .

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-81 LabWindows/CVI 4.0 Addendum

Return Value

error short integer Refer to error codes in Table 4-5.

Parameter Discussion

counter is the counter to be used for the counting operation. The valid counters are shown in
Table 4-2, which is found in the Valid Counters for the Counter/Timer Functions subsection of
the Easy I/O for DAQ Library Function Overview section of this chapter.

sourceTimebase determines whether the counter uses its SOURCE pin or an internal timebase
as its signal source. Pass USE_COUNTER_SOURCE to count TTL edges at counter’s SOURCE
pin, or pass a valid internal timebase frequency to count the TTL edges of an internal clock.

Valid internal timebase frequencies are:

1000000 (Am9513)
100000 (Am9513)
10000 (Am9513)
1000 (Am9513)
100 (Am9513)
20000000 (DAQ-STC)
100000 (DAQ-STC)

timebaseDivisor is the source frequency divisor. For example, if the source signal is 1000 Hz,
the timebaseDivisor is 10, and the output is pulsed, the frequency of the counter's OUT signal is
100 Hz. If the output is toggled, the frequency is 50 Hz.

gateMode specifies how the signal on the counter's GATE pin is used. This parameter accepts
the following attributes:

• UNGATED_SOFTWARE_START—ignore the gate signal and start when CounterStart is
called.

• COUNT_WHILE_GATE_HIGH—count while the gate signal is TTL high after
CounterStart is called.

• COUNT_WHILE_GATE_LOW—count while the gate signal is TTL low after
CounterStart is called.

• START_COUNTING_ON_RISING_EDGE—start counting on the rising edge of the TTL
gate signal after CounterStart is called.

• START_COUNTING_ON_FALLING_EDGE—start counting on the falling edge of the TTL
gate signal after CounterStart is called.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-82 © National Instruments Corporation

outputBehavior is the behavior of the output signal when counter reaches terminal count. This
parameter accepts the following attributes:

• HIGH_PULSE—high pulse lasting one cycle of the source or timebase signal.

• LOW_PULSE—low pulse lasting one cycle of the source or timebase signal.

• HIGH_TOGGLE—high toggle lasting until the next TC.

• LOW_TOGGLE—low toggle lasting until the next TC.

For a Timebase Divisor of N and a pulsed output, an output pulse equal to the period of the
source or timebase signal appears on counter's OUT pin once each N cycles of that signal For a
toggled output, the output toggles after each N cycles. The toggled output frequency is thus half
that of the pulsed output, in other words,

pulsedFrequency = sourceFrequency/ N

and

toggledFrequency = sourceFrequency/2*N

thus, if N =3, the OUT pin would generate pulses as follows:

 _ _ _ _ _ _ _ _ _ _ _ _
source _| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |_| |
 ___ ___ ___ ___
HIGH_PULSE _| |_______| |_______| |_______| |______
 ___________ ___________
HIGH_TOGGLE _| |___________| |_________

GetAILimitsOfChannel
short error = GetAILimitsOfChannel (short device, char channelString[] ,

char singleChannel[] ,
double initialHighLimitVolts ,
double initialLowLimitVolts ,
double * highLimitVolts ,
double * lowLimitVolts);

Purpose

Returns the high and low limits for a particular channel in the channel string.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-83 LabWindows/CVI 4.0 Addendum

Parameters

Input device short
integer

Assigned by configuration utility.

channelString string Analog input channels that are to be sampled.

singleChannel string A single channel of the channel string.

initialHighLimitVolts double Specifies the maximum voltage to be measured
for all channels in the channel string listed
before a command string that specifies a new
high limit.

initialLowLimitVolts double The minimum voltage to be measured for all
channels in the channel string listed before a
command string that specifies a new low limit.

Output highLimitVolts double Returns the high limit for the specified
channel.

lowLimitVolts double Returns the low limit for the specified channel.

Return Value

error short
integer

Refer to error codes in Table 4-5.

Parameter Discussion

channelString is the analog input channels that are to be sampled. Refer to the Channel String
for Analog Input Functions subsection of the Easy I/O for DAQ Library Function Overview
section of this chapter for the syntax of this string.

singleChannel is a single channel of the channel string. For example, if the channel string is

"0:3,5"

a single channel could be

"2" or

"5" and so on.

initialHighLimitVolts specifies the maximum voltage that is measured for all channels in the
channel string listed before a command string that specifies a new high limit. For the following
channel string:

"0,1; cmd hi 10.0 low -10.0; 2,3"

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-84 © National Instruments Corporation

If initialHighLimitVolts is 5.0, channels "0" and "1" have a high limit of 5.0 and channels
"2" and "3" have a high limit of 10.0.

initialLowLimitVolts is the minimum voltage that is measured for all channels in the channel
string listed before a command string that specifies a new low limit. For the following channel
string:

"0,1; cmd hi 10.0 low -10.0; 2,3"

If the initialLowLimitVolts is -5.0, channels "0" and "1" have a low limit of -5.0 and
channels "2" and "3" have a low limit of -10.0.

GetChannelIndices
short error = GetChannelIndices (short device, char channelString[] ,

char channelSubString[] , short channelType,
long channelIndices[]);

Purpose

Determines the indices of the channels in the channelSubString. For example, if the
channelString is

"1:6"

and the channelSubString is

"1,3,6"

the channelIndices array would be filled as follows:

channelIndices[0] = 0;

channelIndices[1] = 2;

channelIndices[2] = 5;

This function is useful if you want to verify that a particular channel is part of the
channelString.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-85 LabWindows/CVI 4.0 Addendum

Parameters

Input device short integer Assigned by configuration utility.

channelString string The analog channel string.

channelSubString string A sub-string of the channelString.

channelType short integer Specifies whether the channelString is
ANALOG_INPUT or ANALOG_OUTPUT.

Output channelIndices long integer
array

Returns the indices of the channels in the
channelSubString.

Return Value

error short integer Refer to error codes in Table 4-5.

Parameter Discussion

channelString is the analog channels that are to be sampled. Refer to the Channel String for
Analog Input Functions subsection of the Easy I/O for DAQ Library Function Overview section
of this chapter for the syntax of this string.

channelSubString is a sub-string of the channelString. For example, if the channelString is

"0:3,5"

the sub-string could be

"2" or

"1,3"

GetChannelNameFromIndex
short error = GetChannelNameFromIndex (short device, char channelString[] ,

long index, short channelType,
char channelName[]);

Purpose

Determines the name of the particular channel in the channelString indicated by index.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-86 © National Instruments Corporation

Parameters

Input device short integer Assigned by configuration utility.

channelString string Analog input channels that are to be sampled.

index long integer The index of a particular channel in the
channelString.

channelType short integer Specifies whether the channelString is
ANALOG_INPUT or ANALOG_OUTPUT.

Output channelName string Returns the name of the particular channel in
the channelString indicated by index.

Return Value

error short integer Refer to error codes in Table 4-5.

Parameter Discussion

channelString is the analog channels that are to be sampled. Refer to the Channel String for
Analog Input Functions or Channel String for Analog Output Functions subsection of the Easy
I/O for DAQ Library Function Overview section of this chapter for the syntax of this string.

channelName returns the name of the particular channel in the channelString indicated by
index. This string should be declared to have MAX_CHANNEL_NAME_LENGTH bytes.

GetDAQErrorString
char * errorString = GetDAQErrorString (short errorNumber);

Purpose

This function returns a string containing the description for the numeric error code.

Parameters

Input errorNumber short
integer

The error number that was returned from an
Easy I/O for DAQ function.

Return Value

errorString string The string containing the description for the
numeric error code.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-87 LabWindows/CVI 4.0 Addendum

GetNumChannels
short error = GetNumChannels (short device, char channelString[] ,

short channelType,
unsigned long * numberOfChannels);

Purpose

Determines the number of channels contained in the channelString.

You need to know the number of channels in the channelString so that you can interpret (for
analog input) or build (for analog output) waveform arrays correctly.

Parameters

Input device short
integer

Assigned by configuration utility.

channelString string The analog channel string.

channelType short
integer

Specifies whether the channelString is
ANALOG_INPUT or ANALOG_OUTPUT.

Output numberOfChannels unsigned
long integer

Returns the number of channels contained in
the channelString.

Return Value

error short
integer

Refer to error codes in Table 4-5.

Parameter Discussion

channelString is the analog channels that are to be sampled. Refer to the Channel String for
Analog Input Functions or Channel String for Analog Output Functions subsection of the Easy
I/O for DAQ Library Function Overview section of this chapter for the syntax of this string.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-88 © National Instruments Corporation

GroupByChannel
short error = GroupByChannel (float array [] , long numberOfScans,

unsigned long numberOfChannels);

Purpose

This function can be used to reorder an array of data from "grouped by scan" mode into
"grouped by channel" mode.

If you acquire data in "grouped by scan" mode, you need to reorder the array into "grouped by
channel" mode before it can be passed to graph plotting functions, analysis functions, and others.

See the description of the fillMode parameter of AIAcquireWaveforms for an explanation
of "grouped by scan" vs. "grouped by channel".

Parameters

Input/
Output

array double
array

Pass in the “grouped by scan” array and it is
grouped by channel in place.

Input numberOfScans long integer The number of scans contained in the data
array.

numberOfChannels unsigned
long integer

Specifies the number of channels that were
scanned. You can use GetNumChannels to
determine the number of channels contained in
your channel string.

Return Value

error short integer Refer to error codes in Table 4-5.

ICounterControl
short error = ICounterControl (short device, short counter, short controlCode,

unsigned short count, short binaryorBCD ,
short outputState, unsigned short * readValue);

Purpose

Controls counters on devices that use the 8253 timer chip (Lab boards, SCXI-1200, DAQPad-
1200, PC-LPM-16, DAQCard 700).

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-89 LabWindows/CVI 4.0 Addendum

Parameters

Input device short integer Assigned by configuration utility.

counter short integer The counter to be controlled (valid counters are
0 through 2).

controlCode short integer Determines the counter's operating mode.

count unsigned
short integer

The period between output pulses.

binaryorBCD short integer I_BINARY : The counter operates as a 16-bit
binary counter (0 to 65,535); I_BCD: The
counter operates as a 4-decade BCD counter (0
to 9,999).

outputState short integer I_HIGH_STATE : Output state of the counter is
high; I_LOW_STATE: Output state of the
counter is low. Valid when the controlCode = 7
(I_RESET).

Output readValue unsigned
short integer

Returns the value read from the counter when
controlCode = 6 (I_READ).

Return Value

error short integer Refer to error codes in Table 4-5.

Parameter Discussion

controlCode determines the counter's operating mode. This parameter accepts the following
attributes:

• 0: I_TOGGLE_ON_TC—counter's output becomes low after the mode set operation and the
counter decrements from count to 0 while the gate is high. The output toggles from low to
high once the counter reaches 0.

• 1: I_PROGRAMMABLE_ONE_SHOT—counter's output becomes low on the count following
the leading edge of the gate input and becomes high on TC.

• 2: I_RATE_GENERATOR—counter's output becomes low for one period of the clock input.
The count indicates the period between output pulses.

• 3: I_SQUARE_WAVE_RATE_GENERATOR—counter's output stays high for one-half of the
count clock pulses and stays low for the other half.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-90 © National Instruments Corporation

• 4: I_SOFTWARE_TRIGGERED_STROBE—counter's output is initially high, and the
counter begins to count down while the gate input is high. On terminal count, the output
becomes low for on clock pulse, then becomes high again.

• 5: I_HARDWARE_TRIGGERED_STROBE—similar to mode 4, except that a rising edge at
the gate input triggers the count to start.

• 6: I_READ—read the counter and return the value in the readValue parameter.

• 7: I_RESET—resets the counter and sets its output to outputState

count is the period between output pulses. This parameter accepts the following attributes:

• If controlCode is 0, 1, 4, or 5, count can be 0 through 65,535 in binary counter operation
and 0 through 9,999 in binary-coded decimal (BCD) counter operation.

• If controlCode is 2 or 3, count can be 2 through 65,535 in binary counter operation and 2
through 9,999 in BCD counter operation.

Note: 0 is equivalent to 65,535 in binary counter operation and 10,000 in BCD counter
operation.

PlotLastAIWaveformsPopup
short error = PlotLastAIWaveformsPopup (short device, double waveformsBuffer[]);

Purpose

This function plots the last AI waveform that was acquired. It is intended for demonstration
purposes.

Data must be grouped by channel before it is passed to this function:

Either use the GROUP_BY_CHANNEL as the fillMode parameter when acquiring the data or call
GroupByChannel before calling this function.

Parameters

Input device short integer Assigned by configuration utility.

waveformsBuffer double array Array containing the last AI waveform acquired.

Return Value

error short integer Refer to error codes in Table 4-5.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-91 LabWindows/CVI 4.0 Addendum

PulseWidthOrPeriodMeasConfig
short error = PulseWidthOrPeriodMeasConfig (short device, char counter[] ,

unsigned short typeOfMeasurement,
double sourceTimebase,
unsigned long * taskID);

Purpose

Configures the specified counter to measure the pulse width or period of a TTL signal connected
to its GATE pin. The measurement is done by counting the number of cycles of the specified
timebase between the appropriate starting and ending events.

Connect the signal you want to measure to the counter's GATE pin.

To measure with an internal timebase, set sourceTimebase to the desired frequency.

To measure with an external timebase, connect that signal to counter's SOURCE pin and set the
sourceTimebase parameter to USE_COUNTER_SOURCE.

Call CounterStart to start the measurement. Then call CounterRead to read the value. A
valid count value is greater than 3 without overflow.

Parameters

Input device short
integer

Assigned by configuration utility.

counter string The counter to be used for the counting
operation.

typeOfMeasurement unsigned
short
integer

Identifies the type of pulse width or period
measurement to make.

sourceTimebase double USE_COUNTER_SOURCE: count TTL edges
at counter’s SOURCE pin; or supply a valid
internal timebase frequency to count the TTL
edges of an internal clock.

Output taskID unsigned
long integer

The reference number assigned for the counter
reserved for this operation. You pass taskID
to CounterStart , CounterRead , and
CounterStop .

Return Value

error short integer Refer to error codes in Table 4-5.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-92 © National Instruments Corporation

Parameter Discussion

typeOfMeasurement identifies the type of pulse width or period measurement to make. This
parameter accepts the following attributes:

• MEASURE_HIGH_PULSE_WIDTH—measure high pulse width from rising to falling edge.

• MEASURE_LOW_PULSE_WIDTH—measure low pulse width from falling to rising edge.

• MEASURE_PERIOD_BTW_RISING_EDGES—measure period between adjacent rising
edges.

• MEASURE_PERIOD_BTW_FALLING_EDGES—measure period between adjacent falling
edges.

sourceTimebase determines whether the counter uses its SOURCE pin or an internal timebase
as its signal source. Pass USE_COUNTER_SOURCE to count TTL edges at counter’s SOURCE
pin, or pass a valid internal timebase frequency to count the TTL edges of an internal clock.

Valid internal timebase frequencies are:

1000000 (Am9513)
100000 (Am9513)
10000 (Am9513)
1000 (Am9513)
100 (Am9513)
20000000 (DAQ-STC)
100000 (DAQ-STC)

ReadFromDigitalLine
short error = ReadFromDigitalLine (short device, char portNumber [] , short line,

short portWidth , long configure,
unsigned long * lineState);

Purpose

Reads the logical state of a digital line on a port that you configure as input.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-93 LabWindows/CVI 4.0 Addendum

Parameters

Input device short integer Assigned by configuration utility.

portNumber string Specifies the digital port this function
configures.

line short integer Specifies the individual bit or line within the
port to be used for I/O (zero-based).

portWidth short integer The total width in bits of the port. For
example, you can combine two 4-bit ports into
an 8-bit port on an MIO (non E-Series) board
by setting portWidth to 8.

configure long integer 1: Configure the digital port before reading; 0:
Don’t configure the digital port before reading.
When this function is called in a loop, it can be
optimized by only configuring the digital port
on the first iteration.

Output lineState unsigned
long integer

Returns the state of the digital line. 1 = logical
high; 0 = logical low.

Return Value

error short integer Refer to error codes in Table 4-5.

Parameter Discussion

portNumber specifies the digital port this function configures.

• A portNumber value of 0 signifies port 0, a portNumber of 1 signifies port 1, and so on. If
you use an SCXI-1160, SCXI-1161, SCXI-1162, or SCXI-1163 module, use the

• "SCx!MDy!0"

• syntax, where x is the chassis ID and y is the module device number, to specify the port on a
module.

portWidth is the total width in bits of the port. For example, you can combine two 4-bit ports
into an 8-bit port on an MIO (non E-Series) board by setting portWidth to 8.

• When portWidth is greater than the physical port width of a digital port, the following
restrictions apply. The portWidth must be an integral multiple of the physical port width,
and the port numbers in the combined port must begin with the port named by portNumber
and must increase consecutively. For example, if portNumber is 3 and portWidth is
24(bits), LabWindows/CVI uses ports 3, 4, and 5.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-94 © National Instruments Corporation

• The portWidth for the 8255-based digital I/O ports (including all digital ports on Lab
boards, SCXI-1200, DAQPad-1200, DAQCard-1200, DIO-24, DIO-32F, DIO-96, and AT-
MIO-16DE-10/AT-MIO-16D ports 2, 3 and 4) should be at least 8.

configure specifies whether to configure the digital port before reading.

• When this function is called in a loop, it can be optimized by only configuring the digital
port on the first iteration.

• When you configure a digital I/O port that is part of an 8255 PPI (including all digital ports
on Lab boards, SCXI-1200, DAQPad-1200, DAQCard-1200, DIO-24, DIO-32F, DIO-96,
and AT-MIO-16DE-10/AT-MIO-16D ports 2, 3 and 4), the 8255 PPI goes through a
configuration phase, where all the ports within the same PPI chip get reset to logic low,
regardless of the data direction. The data directions on other ports, however, are maintained.

ReadFromDigitalPort
short error = ReadFromDigitalPort (short device, char portNumber [] ,

short portWidth , long configure,
unsigned long * pattern);

Purpose

Reads a digital port that you configure for input.

Parameters

Input device short integer Assigned by configuration utility.

portNumber string Specifies the digital port this function
configures.

line short integer Specifies the individual bit or line within the
port to be used for I/O.

portWidth short integer The total width in bits of the port. For example,
you can combine two 4-bit ports into an 8-bit
port on an MIO (non E-Series) board by setting
portWidth to 8.

configure long integer 1: Configure the digital port before reading; 0:
Don’t configure the digital port before reading.
When this function is called in a loop, it can be
optimized by only configuring the digital port on
the first iteration.

Output pattern unsigned
long integer

The data read from the digital port.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-95 LabWindows/CVI 4.0 Addendum

Return Value

error short integer Refer to error codes in Table 4-5.

Parameter Discussion

portNumber specifies the digital port this function configures.

A portNumber value of 0 signifies port 0, a portNumber of 1 signifies port 1, and so on. If
you use an SCXI-1160, SCXI-1161, SCXI-1162, or SCXI-1163 module, use the

"SCx!MDy!0"

syntax, where x is the chassis ID and y is the module device number, to specify the port on a
module.

portWidth is the total width in bits of the port. For example, you can combine two 4-bit ports
into an 8-bit port on an MIO (non E-Series) board by setting portWidth to 8.

• When portWidth is greater than the physical port width of a digital port, the following
restrictions apply. The portWidth must be an integral multiple of the physical port width,
and the port numbers in the combined port must begin with the port named by portNumber
and must increase consecutively. For example, if portNumber is 3 and portWidth is
24(bits), LabWindows/CVI uses ports 3, 4, and 5.

• The portWidth for the 8255-based digital I/O ports (including all digital ports on Lab
boards, SCXI-1200, DAQPad-1200, DAQCard-1200, DIO-24, DIO-32F, DIO-96, and AT-
MIO-16DE-10/AT-MIO-16D ports 2, 3 and 4) should be at least 8.

configure specifies whether to configure the digital port before reading.

• When this function is called in a loop, it can be optimized by only configuring the digital
port on the first iteration.

• When you configure a digital I/O port that is part of an 8255 PPI (including all digital ports
on Lab boards, SCXI-1200, DAQPad-1200, DAQCard-1200, DIO-24, DIO-32F, DIO-96,
and AT-MIO-16DE-10/AT-MIO-16D ports 2, 3 and 4), the 8255 PPI goes through a
configuration phase, where all the ports within the same PPI chip get reset to logic low,
regardless of the data direction. The data directions on other ports, however, are maintained.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-96 © National Instruments Corporation

WriteToDigitalLine
short error = WriteToDigitalLine (short device, char portNumber [] , short line,

short portWidth , long configure,
unsigned long lineState);

Purpose

Sets the output logic state of a digital line on a digital port.

Parameters

Input device short integer Assigned by configuration utility.

portNumber string Specifies the digital port this function configures.

line short integer Specifies the individual bit or line within the port to
be used for I/O.

portWidth short integer The total width in bits of the port. For example, you
can combine two 4-bit ports into an 8-bit port on an
MIO (non E-Series) board by setting portWidth
to 8.

configure long integer 1: Configure the digital port before writing; 0: Don’t
configure the digital port before writing. When this
function is called in a loop, it can be optimized by
only configuring the digital port on the first
iteration.

lineState unsigned long
integer

Specifies the new state of the digital line. 1 = logical
high; 0 = logical low.

Return Value

error short integer Refer to error codes in Table 4-5.

Parameter Discussion

portNumber specifies the digital port this function configures.

A portNumber value of 0 signifies port 0, a portNumber of 1 signifies port 1, and so on. If
you use an SCXI-1160, SCXI-1161, SCXI-1162, or SCXI-1163 module, use the

"SCx!MDy!0"

syntax, where x is the chassis ID and y is the module device number, to specify the port on a
module.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-97 LabWindows/CVI 4.0 Addendum

portWidth is the total width in bits of the port. For example, you can combine two 4-bit ports
into an 8-bit port on an MIO (non E-Series) board by setting portWidth to 8.

• When portWidth is greater than the physical port width of a digital port, the following
restrictions apply. The portWidth must be an integral multiple of the physical port width,
and the port numbers in the combined port must begin with the port named by portNumber
and must increase consecutively. For example, if portNumber is 3 and portWidth is
24(bits), LabWindows/CVI uses ports 3, 4, and 5.

• The portWidth for the 8255-based digital I/O ports (including all digital ports on Lab
boards, SCXI-1200, DAQPad-1200, DAQCard-1200, DIO-24, DIO-32F, DIO-96, and AT-
MIO-16DE-10/AT-MIO-16D ports 2, 3 and 4) should be at least 8.

configure specifies whether to configure the digital port before writing.

• When this function is called in a loop, it can be optimized by only configuring the digital
port on the first iteration.

• When you configure a digital I/O port that is part of an 8255 PPI (including all digital ports
on Lab boards, SCXI-1200, DAQPad-1200, DAQCard-1200, DIO-24, DIO-32F, DIO-96,
and AT-MIO-16DE-10/AT-MIO-16D ports 2, 3 and 4), the 8255 PPI goes through a
configuration phase, where all the ports within the same PPI chip get reset to logic low,
regardless of the data direction. The data directions on other ports, however, are maintained.

WriteToDigitalPort
short error = WriteToDigitalPort (short device, char portNumber [] , short portWidth ,

long configure, unsigned long pattern);

Purpose

Outputs a decimal pattern to a digital port.

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-98 © National Instruments Corporation

Parameters

Input device short integer Assigned by configuration utility.

portNumber string Specifies the digital port this function configures.

portWidth short integer The total width in bits of the port. For example,
you can combine two 4-bit ports into an 8-bit port
on an MIO (non E-Series) board by setting
portWidth to 8.

configure long integer 1: Configure the digital port before writing; 0:
Don’t configure the digital port before writing.
When this function is called in a loop, it can be
optimized by only configuring the digital port on
the first iteration.

pattern unsigned
long integer

Specifies the new state of the lines in the port.

Return Value

error short integer Refer to error codes in Table 4-5.

Parameter Discussion

portNumber specifies the digital port this function configures.

A portNumber value of 0 signifies port 0, a portNumber of 1 signifies port 1, and so on. If
you use an SCXI-1160, SCXI-1161, SCXI-1162, or SCXI-1163 module, use the

"SCx!MDy!0"

syntax, where x is the chassis ID and y is the module device number, to specify the port on a
module.

portWidth is the total width in bits of the port. For example, you can combine two 4-bit ports
into an 8-bit port on an MIO (non E-Series) board by setting portWidth to 8.

• When portWidth is greater than the physical port width of a digital port, the following
restrictions apply. The portWidth must be an integral multiple of the physical port width,
and the port numbers in the combined port must begin with the port named by portNumber
and must increase consecutively. For example, if portNumber is 3 and portWidth is
24(bits), LabWindows/CVI uses ports 3, 4, and 5.

• The portWidth for the 8255-based digital I/O ports (including all digital ports on Lab
boards, SCXI-1200, DAQPad-1200, DAQCard-1200, DIO-24, DIO-32F, DIO-96, and AT-
MIO-16DE-10/AT-MIO-16D ports 2, 3 and 4) should be at least 8.

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-99 LabWindows/CVI 4.0 Addendum

configure specifies whether to configure the digital port before writing.

• When this function is called in a loop, it can be optimized by only configuring the digital
port on the first iteration.

• When you configure a digital I/O port that is part of an 8255 PPI (including all digital ports
on Lab boards, SCXI-1200, DAQPad-1200, DAQCard-1200, DIO-24, DIO-32F, DIO-96,
and AT-MIO-16DE-10/AT-MIO-16D ports 2, 3 and 4), the 8255 PPI goes through a
configuration phase, where all the ports within the same PPI chip get reset to logic low,
regardless of the data direction. The data directions on other ports, however, are maintained.

Error Conditions
All of the functions in the Easy I/O for DAQ Library return an error code. A negative number
indicates that an error occurred. If the return value is positive, it has the same description as if it
were negative, but it is considered a warning.

Table 4-5. Easy I/O for DAQ Error Codes

0 Success.

-10001 syntaxErr An error was detected in the input string; the arrangement or ordering of
the characters in the string is not consistent with the expected ordering.

-10002 semanticsErr An error was detected in the input string; the syntax of the string is
correct, but certain values specified in the string are inconsistent with other values
specified in the string.

-10003 invalidValueErr The value of a numeric parameter is invalid.

-10004 valueConflictErr The value of a numeric parameter is inconsistent with another
parameter, and the combination is therefore invalid.

-10005 badDeviceErr The device parameter is invalid.

-10006 badLineErr The line parameter is invalid.

-10007 badChanErr A channel is out of range for the device type or input configuration,
the combination of channels is invalid, or you must reverse the scan order so that
channel 0 is last.

-10008 badGroupErr The group parameter is invalid.

-10009 badCounterErr The counter parameter is invalid.

-10010 badCountErr The count parameter is too small or too large for the specified
counter.

-10011 badIntervalErr The interval parameter is too small or too large for the associated
counter or I/O channel.

continues

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-100 © National Instruments Corporation

Table 4-5. Easy I/O for DAQ Error Codes (Continued)

-10012 badRangeErr The analog input or analog output voltage range is invalid for the
specified channel.

-10013 badErrorCodeErr The driver returned an unrecognized or unlisted error code.

-10014 groupTooLargeErr The group size is too large for the device.

-10015 badTimeLimitErr The time limit parameter is invalid.

-10016 badReadCountErr The read count parameter is invalid.

-10017 badReadModeErr The read mode parameter is invalid.

-10018 badReadOffsetErr The offset is unreachable.

-10019 badClkFrequencyErr The frequency parameter is invalid.

-10020 badTimebaseErr The timebase parameter is invalid.

-10021 badLimitsErr The limits are beyond the range of the device.

-10022 badWriteCountErr Your data array contains an incomplete update, or you are
trying to write past the end of the internal buffer, or your output operation is
continuous and the length of your array is not a multiple of one half of the internal
buffer size.

-10023 badWriteModeErr The write mode is out of range or is invalid.

-10024 badWriteOffsetErr The write offset plus the write mark is greater than the internal
buffer size or it must be set to 0.

-10025 limitsOutOfRangeErr The voltage limits are out of range for this device in the
current configuration. Alternate limits were selected.

-10026 badInputBufferSpecification The input buffer specification is invalid. This error
results if, for example, you try to configure a multiple-buffer acquisition for a device
that cannot perform multiple-buffer acquisition.

-10027 badDAQEventErr For DAQEvents 0 and 1, general value A must be greater than 0
and less than the internal buffer size. If DMA is used for DAQEvent 1, general value
A must divide the internal buffer size evenly, with no remainder. If the TIO-10 is
used for DAQEvent 4, general value A must be 1 or 2.

-10028 badFilterCutoffErr The cutoff frequency is not valid for this device.

-10080 badGainErr The gain parameter is invalid.

-10081 badPretrigCountErr The pretrigger sample count is invalid.

-10082 badPosttrigCountErr The posttrigger sample count is invalid.

-10083 badTrigModeErr The trigger mode is invalid.

continues

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-101 LabWindows/CVI 4.0 Addendum

Table 4-5. Easy I/O for DAQ Error Codes (Continued)

-10084 badTrigCountErr The trigger count is invalid.

-10085 badTrigRangeErr The trigger range or trigger hysteresis window is invalid.

-10086 badExtRefErr The external reference value is invalid.

-10087 badTrigTypeErr The trigger type parameter is invalid.

-10088 badTrigLevelErr The trigger level parameter is invalid.

-10089 badTotalCountErr The total count specified is inconsistent with the buffer
configuration and pretrigger scan count or with the device type.

-10090 badRPGErr The individual range, polarity, and gain settings are valid but the
combination specified is invalid for this device.

-10091 badIterationsErr The analog output buffer iterations count is invalid. It must be 0
(for indefinite iterations) or 1.

-10100 badPortWidthErr The requested digital port width is not a multiple of the hardware
port width.

-10240 noDriverErr The driver interface could not locate or open the driver.

-10241 oldDriverErr The driver is out of date.

-10242 functionNotFoundErr The specified function is not located in the driver.

-10243 configFileErr The driver could not locate or open the configuration file, or the
format of the configuration file is not compatible with the currently installed driver.

-10244 deviceInitErr The driver encountered a hardware-initialization error while
attempting to configure the specified device.

-10245 osInitErr The driver encountered an operating system error while attempting to
perform an operation, or the driver performed an operation that the operating system
does not recognize.

-10246 communicationsErr The driver is unable to communicate with the specified
external device.

-10247 cmosConfigErr The CMOS configuration memory for the computer is empty or
invalid, or the configuration specified does not agree with the current configuration
of the computer.

-10248 dupAddressErr The base addresses for two or more devices are the same;
consequently, the driver is unable to access the specified device.

-10249 intConfigErr The interrupt configuration is incorrect given the capabilities of the
computer or device.

-10250 dupIntErr The interrupt levels for two or more devices are the same.

continues

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-102 © National Instruments Corporation

Table 4-5. Easy I/O for DAQ Error Codes (Continued)

-10251 dmaConfigErr The DMA configuration is incorrect given the capabilities of the
computer/DMA controller or device.

-10252 dupDMAErr The DMA channels for two or more devices are the same.

-10253 switchlessBoardErr NI-DAQ was unable to find one or more switchless boards you
have configured using WDAQCONF.

-10254 DAQCardConfigErr Cannot configure the DAQCard because: 1) The correct
version of card and socket services software is not installed. 2) The card in the
PCMCIA socket is not a DAQCard. 3) The base address and/or interrupt level
requested are not available according to the card and socket services resource
manager. Try different settings or use AutoAssign in the NIDAQ configuration
utility.

-10340 noConnectErr No RTSI signal/line is connected, or the specified signal and the
specified line are not connected.

-10341 badConnectErr The RTSI signal/line cannot be connected as specified.

-10342 multConnectErr The specified RTSI signal is already being driven by a RTSI line,
or the specified RTSI line is already being driven by a RTSI signal.

-10343 SCXIConfigErr The specified SCXI configuration parameters are invalid, or the
function cannot be executed given the current SCXI configuration.

-10360 DSPInitErr The DSP driver was unable to load the kernel for its operating system.

-10370 badScanListError The scan list is invalid. This error can result if, for example, you
mix AMUX-64T channels and onboard channels, or if you scan multiplexed SCXI
channels out of order.

-10400 userOwnedRsrcErr The specified resource is owned by the user and cannot be
accessed or modified by the driver.

-10401 unknownDeviceErr The specified device is not a National Instruments product, or
the driver does not work with the device (for example, the driver was released before
the features of the device existed).

-10402 deviceNotFoundErr No device is located in the specified slot or at the specified
address.

-10403 deviceSupportErr The requested action does not work with specified device (the
driver recognizes the device, but the action is inappropriate for the device).

-10404 noLineAvailErr No line is available.

-10405 noChanAvailErr No channel is available.

-10406 noGroupAvailErr No group is available.

continues

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-103 LabWindows/CVI 4.0 Addendum

Table 4-5. Easy I/O for DAQ Error Codes (Continued)

-10407 lineBusyErr The specified line is in use.

-10408 chanBusyErr The specified channel is in use.

-10409 groupBusyErr The specified group is in use.

-10410 relatedLCGBusyErr A related line, channel, or group is in use; if the driver
configures the specified line, channel, or group, the configuration, data, or
handshaking lines for the related line, channel, or group will be disturbed.

-10411 counterBusyErr The specified counter is in use.

-10412 noGroupAssignErr No group is assigned, or the specified line or channel cannot be
assigned to a group.

-10413 groupAssignErr A group is already assigned, or the specified line or channel is
already assigned to a group.

-10414 reservedPinErr Selected signal indicates a pin reserved by NI-DAQ. You cannot
configure this pin yourself.

-10440 sysOwnedRsrcErr The specified resource is owned by the driver and cannot be
accessed or modified by the user.

-10441 memConfigErr No memory is configured to work with the current data transfer
mode, or the configured memory does not work with the current data transfer
mode.(If block transfers are in use, the memory must be capable of performing block
transfers.)

-10442 memDisabledErr The specified memory is disabled or is unavailable given the
current addressing mode.

-10443 memAlignmentErr The transfer buffer is not aligned properly for the current data
transfer mode. For example, the memory buffer is at an odd address, is not aligned to
a 32-bit boundary, is not aligned to a 512-bit boundary, and so on. Alternatively, the
driver is unable to align the buffer because the buffer is too small.

-10444 memFullErr No more system memory is available on the heap, or no more memory
is available on the device.

-10445 memLockErr The transfer buffer cannot be locked into physical memory.

-10446 memPageErr The transfer buffer contains a page break; system resources may
require reprogramming when the page break is encountered.

-10447 memPageLockErr The operating environment is unable to grant a page lock.

-10448 stackMemErr The driver is unable to continue parsing a string input due to stack
limitations.

continues

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-104 © National Instruments Corporation

Table 4-5. Easy I/O for DAQ Error Codes (Continued)

-10449 cacheMemErr A cache-related error occurred, or caching does not work in the
current mode.

-10450 physicalMemErr A hardware error occurred in physical memory, or no memory is
located at the specified address.

-10451 virtualMemErr The driver is unable to make the transfer buffer contiguous in
virtual memory and therefore cannot lock the buffer into physical memory; thus, you
cannot use the buffer for DMA transfers.

-10452 noIntAvailErr No interrupt level is available for use.

-10453 intInUseErr The specified interrupt level is already in use by another device.

-10454 noDMACErr No DMA controller is available in the system.

-10455 noDMAAvailErr No DMA channel is available for use.

-10456 DMAInUseErr The specified DMA channel is already in use by another device.

-10457 badDMAGroupErr DMA cannot be configured for the specified group because it is
too small, too large, or misaligned. Consult the user manual for the device in
question to determine group ramifications with respect to DMA.

-10459 DLLInterfaceErr The DLL could not be called due to an interface error.

-10460 interfaceInteractionErr You have attempted to mix LabVIEW 2.2 VIs and
LabVIEW 3.0 VIs. You may run an application consisting only of 2.2 VIs, then run
the 2.2 Board Reset VI, before you can run any 3.0 VIs. You may run an application
consisting of only 3.0 VIs, then run the 3.0 Device Reset VI, before you can run any
2.2 VIs.

-10560 invalidDSPhandleError The DSP handle input to the VI is not a valid handle.

-10600 noSetupErr No setup operation has been performed for the specified resources.

-10601 multSetupErr The specified resources have already been configured by a setup
operation.

-10602 noWriteErr No output data has been written into the transfer buffer.

-10603 groupWriteErr The output data associated with a group must be for a single
channel or must be for consecutive channels.

-10604 activeWriteErr Once data generation has started, only the transfer buffers originally
written to can be updated. If DMA is active and a single transfer buffer contains
interleaved channel data, all output channels currently using the DMA channel will
require new data.

continues

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-105 LabWindows/CVI 4.0 Addendum

Table 4-5. Easy I/O for DAQ Error Codes (Continued)

-10605 endWriteErr No data was written to the transfer buffer because the final data block
has already been loaded.

-10606 notArmedErr The specified resource is not armed.

-10607 armedErr The specified resource is already armed.

-10608 noTransferInProgErr No transfer is in progress for the specified resource.

-10609 transferInProgErr A transfer is already in progress for the specified resource.

-10610 transferPauseErr A single output channel in a group cannot be paused if the output
data for the group is interleaved.

-10611 badDirOnSomeLinesErr Some of the lines in the specified channel are not
configured for the transfer direction specified. For a write transfer, some lines were
configured for input. For a read transfer, some lines were configured for output.

-10612 badLineDirErr The specified line does not support the specified transfer direction.

-10613 badChanDirErr The specified channel does not support the specified transfer
direction.

-10614 badGroupDirErr The specified group does not support the specified transfer
direction.

-10615 masterClkErr The clock configuration for the clock master is invalid.

-10616 slaveClkErr The clock configuration for the clock slave is invalid.

-10617 noClkSrcErr No source signal has been assigned to the clock resource.

-10618 badClkSrcErr The specified source signal cannot be assigned to the clock resource.

-10619 multClkSrcErr A source signal has already been assigned to the clock resource.

-10620 noTrigErr No trigger signal has been assigned to the trigger resource.

-10621 badTrigErr The specified trigger signal cannot be assigned to the trigger resource.

-10622 preTrigErr The pretrigger mode is not supported or is not available in the current
configuration, or no pretrigger source has been assigned.

-10623 postTrigErr No posttrigger source has been assigned.

-10624 delayTrigErr The delayed trigger mode is not supported or is not available in the
current configuration, or no delay source has been assigned.

-10625 masterTrigErr The trigger configuration for the trigger master is invalid.

-10626 slaveTrigErr The trigger configuration for the trigger slave is invalid.

-10627 noTrigDrvErr No signal has been assigned to the trigger resource.

continues

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-106 © National Instruments Corporation

Table 4-5. Easy I/O for DAQ Error Codes (Continued)

-10628 multTrigDrvErr A signal has already been assigned to the trigger resource.

-10629 invalidOpModeErr The specified operating mode is invalid, or the resources have
not been configured for the specified operating mode.

-10630 invalidReadErr An attempt was made to read 0 bytes from the transfer buffer, or an
attempt was made to read past the end of the transfer buffer.

-10631 noInfiniteModeErr Continuous input or output transfers are invalid in the current
operating mode.

-10632 someInputsIgnoredErr Certain inputs were ignored because they are not relevant in
the current operating mode.

-10633 invalidRegenModeError This device does not support the specified analog output
regeneration mode.

-10680 badChanGainErr All channels must have an identical setting for this device.

-10681 badChanRangeErr All channels of this device must have the same range.

-10682 badChanPolarityErr All channels of this device must have the same polarity.

-10683 badChanCouplingErr All channels of this device must have the same coupling.

-10684 badChanInputModeErr All channels of this device must have the same input
range.

-10685 clkExceedsBrdsMaxConvRate The clock rate selected exceeds the recommended
maximum rate for this device.

-10686 scanListInvalidErr A configuration change has invalidated the scan list.

-10687 bufferInvalidErr A configuration change has invalidated the allocated buffer.

-10688 noTrigEnabledErr The total number of scans and pretrigger scans implies that a
trigger start is intended, but no trigger is enabled.

-10689 digitalTrigBErr Digital trigger B is illegal for the total scans and pretrigger scans
specified.

-10690 digitalTrigAandBErr With this device, you cannot enable digital triggers A and B
at the same time.

-10691 extConvRestrictionErr With this device, you cannot use an external sample clock
with an external scan clock, start trigger, or stop trigger.

-10692 chanClockDisabledErr Cannot start the acquisition because the channel clock is
disabled.

-10693 extScanClockError Cannot use an external scan clock when performing a single
scan of a single channel.

continues

Chapter 4 Updates to the Standard Libraries Reference Manual

© National Instruments Corporation 4-107 LabWindows/CVI 4.0 Addendum

Table 4-5. Easy I/O for DAQ Error Codes (Continued)

-10694 unsafeSamplingFreqError The sampling frequency exceeds the safe maximum rate
for the ADC, gains, and filters you are using.

-10695 DMAnotAllowedErr You must use interrupts. DMA does not work.

-10696 multiRateModeErr Multi-rate scanning can not be used with AMUX-64, SCXI, or
pre-triggered acquisitions.

-10697 rateNotSupportedErr NI-DAQ was unable to convert your timebase/interval pair to
match the actual hardware capabilities of the specified board.

-10698 timebaseConflictErr You cannot use this combination of scan and sample clock
timebases for the specified board.

-10699 polarityConflictErr You cannot use this combination of scan and sample clock
source polarities for this operation, for the specified board.

-10700 signalConflictErr You cannot use this combination of scan and convert clock signal
sources for this operation, for the specified board.

-10740 SCXITrackHoldErr A signal has already been assigned to the SCXI track-and-hold
trigger line, or a control call was inappropriate because the specified module is not
configured for one-channel operation.

-10780 sc2040InputModeErr When you have an SC2040 attached to your device, all
analog input channels must be configured for differential input mode.

-10800 timeOutErr The operation could not complete within the time limit.

-10801 calibrationErr An error occurred during the calibration process.

-10802 dataNotAvailErr The requested amount of data has not yet been acquired, or the
acquisition has completed and no more data is available to read.

-10803 transferStoppedErr The transfer has been stopped to prevent regeneration of output
data.

-10804 earlyStopErr The transfer stopped prior to reaching the end of the transfer buffer.

-10805 overRunErr The clock source for the input transfer is faster than the maximum
input-clock rate; the integrity of the data has been compromised. Alternatively, the
clock source for the output transfer is faster than the maximum output-clock rate; a
data point was generated more than once because the update occurred before new
data was available.

-10806 noTrigFoundErr No trigger value was found in the input transfer buffer.

-10807 earlyTrigErr The trigger occurred before sufficient pretrigger data was acquired.

-10809 gateSignalError Attempted to start a pulse width measurement with the pulse in the
active state.

continues

Updates to the Standard Libraries Reference Manual Chapter 4

LabWindows/CVI 4.0 Addendum 4-108 © National Instruments Corporation

Table 4-5. Easy I/O for DAQ Error Codes (Continued)

-10840 softwareErr The contents or the location of the driver file was changed between
accesses to the driver.

-10841 firmwareErr The firmware does not support the specified operation, or the firmware
operation could not complete due to a data-integrity problem.

-10842 hardwareErr The hardware is not responding to the specified operation, or the
response from the hardware is not consistent with the functionality of the hardware.

-10843 underFlowErr The update rate exceeds your system's capacity to supply data to the
output channel.

-10844 underWriteErr At the time of the update for the device-resident memory,
insufficient data was present in the output transfer buffer to complete the update.

-10845 overFlowErr At the time of the update clock for the input channel, the device-
resident memory was unable to accept additional data—one or more data points may
have been lost.

-10846 overWriteErr New data was written into the input transfer buffer before the old data
was retrieved.

-10847 dmaChainingErr New buffer information was not available at the time of the DMA
chaining interrupt; DMA transfers will terminate at the end of the currently active
transfer buffer.

-10848 noDMACountAvailErr The driver could not obtain a valid reading from the
transfer-count register in the DMA controller.

-10849 openFileError Unable to open a file.

-10850 closeFileError Unable to close a file.

-10851 fileSeekError Unable to seek within a file.

-10852 readFileError Unable to read from a file.

-10853 writeFileError Unable to write to a file.

-10854 miscFileError An error occurred accessing a file.

-10880 updateRateChangeError A change to the update rate is not possible at this time
because: 1) When waveform generation is in progress, you cannot change the
interval timebase. 2) When you make several changes in a row, you must wait long
enough for each change to take effect before you request further changes.

-10920 gpctrDataLossError One or more data points may have been lost during buffered
GPCTR operations due to speed limitations of your system.

© National Instruments Corporation 5-1 LabWindows/CVI 4.0 Addendum

Chapter 5
General Updates to
LabWindows/CVI

Chapter Contents
Configuring LabWindows/CVI in Windows 95 and NT ... 2
How To Set Configuration Options... 2
Option Descriptions .. 2

Directory Options.. 2
cfgdir... 2

Changes to the Data Acquisition Library.. 3
Event Function Parameter Data Types Changed for Windows 95 and NT................................... 3

Source Code Changes Needed... 4
Differences in Current NI-DAQ

®
 API for Windows NT.. 4

Changes to the Function Tree and Function Panel Editors.. 5
Function Tree Editor... 5

Maximum Number of Levels Increased to Eight ... 5
Create DLL Project (Windows 95/NT Only) ... 5

Function Panel Editor ... 6
VXI Plug & Play Style.. 6
Numeric Control Supports Additional Data Types... 6

Changes to the Programmer’s Toolbox... 7
Additions to the inifile Instrument Driver ... 7

New Functions to Handle DOS/Windows Pathnames.. 7
Easy Tab Instrument Driver Added... 7
New Instrument Driver for Regular Expression Matching... 8

General Updates to LabWindows/CVI Manuals Chapter 5

LabWindows/CVI 4.0 Addendum 5-2 © National Instruments Corporation

Configuring LabWindows/CVI in
Windows 95 and NT
Configuring LabWindows/CVI in Windows 95 and NT is very similar to configuring it under
Windows 3.1. Configuration is discussed in Chapter 1, Configuring LabWindows/CVI of the
User Manual. This chapter discusses the changes to the standard method for configuration under
Windows.

How To Set Configuration Options
In Windows 3.1, the configuration options that are needed to launch the LabWindows/CVI
development environment are stored in the win.ini file. In Windows 95 and NT, these are
stored in the Registry under the following key.

HKEY_LOCAL_MACHINE\Software\National Instruments\CVI

There are also configuration settings for the run-time library DLLs. See the Configuring the
Run-Time Engine section in Chapter 4, Creating and Distributing Standalone Executables, of the
Programmer Reference Manual for a description of the settings. In Windows 95 and NT, these
settings are stored in the Registry under the following key.

HKEY_LOCAL_MACHINE\Software\National Instruments\CVI Run-time Engine

Option Descriptions

Directory Options

cfgdir

The cfgdir option is not used for Windows 95 and NT. In Windows 3.1, the cfgdir option
identifies the directory for the LabWindows/CVI configuration file, cvi.ini , which stores the
current state of the options that you can set within the LabWindows/CVI development
environment.

In Windows 95 and NT, cvi.ini is not used. Instead, the current state of the options that you
can set within the environment are stored in the Registry under the following key.

HKEY_CURRENT_USER\Software\National Instruments\CVI

Chapter 5 General Updates to LabWindows/CVI Manuals

© National Instruments Corporation 5-3 LabWindows/CVI 4.0 Addendum

Changes to the Data Acquisition Library
This chapter discusses changes made to the LabWindows/CVI Data Acquistion Library.

Event Function Parameter Data Types
Changed for Windows 95 and NT
Some parameters in the Data Acquisition event handling functions that are two bytes under
Windows 3.1 have been increased in size to four bytes under Windows 95 and NT. Typedefs
have been added to the include file (dataacq.h) and the function panels so that you can write
source code that works on all three platforms.

The following table shows the typedefs and the intrinsic types under for the different platforms.

Table 5-1. Typedefs and Intrinsic Types for Different Platforms

Typedef Windows 3.1 Windows 95/NT

DAQEventHandle short int

DAQEventMsg short int

DAQEventWParam unsigned short unsigned int

DAQEventLParam unsigned long unsigned long

The following function prototypes have been affected by this change.

typedef void (*DAQEventCallbackPtr) (DAQEventHandle handle, DAQEventMsg
msg, DAQEventWParam wParam, DAQEventLParam lParam);

short Config_Alarm_Deadband (short board, short mode, char channelString[] ,
double triggerLevel, deadbandWidth, DAQEventHandle
handle,
DAQEventMsg alarmOnMessage,
DAQEventMsg alarmOffMessage,
DAQEventCallbackPtr EventFunction);

short Config_ATrig_Event_Message (short board, short mode, char channelString[] ,
double triggerLevel, double windowSize, short
triggerSlope,
long triggerSkipCount, unsigned long preTriggerScans,
unsigned long postTriggerScans, DAQEventHandle
handle, DAQEventMsg message,
DAQEventCallbackPtr eventFunction);

General Updates to LabWindows/CVI Manuals Chapter 5

LabWindows/CVI 4.0 Addendum 5-4 © National Instruments Corporation

short Config_DAQ_Event_Message (short board, short mode, char channelString[] ,
short DAQEvent, unsigned long triggerValue0,
unsigned long triggerValue1, long triggerSkipCount,
unsigned long preTriggerScans,
unsigned long postTriggerScans, DAQEventHandle
handle, DAQEventMsg message, DAQEventCallbackPtr
eventFunction);

short Get_DAQ_Event (unsigned long timeOut, DAQEventHandle *handle,
DAQEventMsg *message, DAQEventWParam *wParam,
DAQEventLParam * lParam);

short Peek_DAQ_Event (unsigned long timeOut, DAQEventHandle *handle,
DAQEventMsg *message, DAQEventWParam *wParam,
DAQEventLParam * lParam);

Source Code Changes Needed

If you have written source code for Windows 3.1 that uses these functions and you want to use
the source code under Windows 95 or NT, you must modify your source code.

You must change the parameter declarations for all of your event callback functions to match the
new callback function prototype. You must also use the new typedefs in the declarations of
variables that are passed by reference to Get_DAQ_Event and Peek_DAQ_Event .

Differences in Current NI-DAQ® API for
Windows NT
The following functions are not in the current NI-DAQ API for Windows NT. They will be
added in a new release of the NI-DAQ DLL for Windows NT in the latter part of 1996.

SC_2040_Config
Calibrate_E_Series
Calibrate_1200
AI_Read_Scan
AI_Vread_Scan
AO_Change_Parameter
SCXI_Config_Filter

The original NI-DAQ API for Windows NT is different than the NI-DAQ API for Windows 95.
Some parameters that are 2-byte integers in the Windows 95 API are 4-byte integers in the
original Windows NT API. In the latter part of 1996, the NI-DAQ API for Windows NT will be
changed to be consistent with the NI-DAQ API for Windows 95. The LabWindows/CVI Data
Acquisition Library presents a Windows 95 style API for both Windows 95 and Windows NT.

If you try to compile existing NI-DAQ programs for Windows NT in LabWindows/CVI, the
LabWindows/CVI compiler reports data type mismatches on array and reference parameters in
your Data Acquisition function calls. Change the declarations of the variables used as the

Chapter 5 General Updates to LabWindows/CVI Manuals

© National Instruments Corporation 5-5 LabWindows/CVI 4.0 Addendum

reference and array parameters from int or unsigned int to short or unsigned
short .

Changes to the Function Tree and Function
Panel Editors
This chapter discusses the changes to the Function Tree Editor and Function Panel Editor.

The Function Tree and Function Panel Editors are documented in Chapters 3 and 4 of the
LabWindows/CVI Instrument Developers Guide. The changes documented in this chapter apply
to all platforms, unless otherwise marked.

Function Tree Editor
The following changes have been made to the Function Tree Editor.

Maximum Number of Levels Increased to Eight

The maximum number of levels in a function tree has been increased from four to eight.

Create DLL Project (Windows 95/NT Only)

The Generate DLL Makefile command in the Options menu of the Function Tree Editor
window for Windows 3.1 has been replaced by the Create DLL Project command for Windows
95 and NT. The Create DLL Project command creates a LabWindows/CVI project (.prj) file
that can be used to create a dynamic link library (.dll) from the program file associated with
the function panel (.fp) file. If there is no program file associated with the .fp file, the project
is created with a .c and .h file of the same base name as the .fp file.

When you execute this command, you are prompted to enter a pathname for the project file.
After the file is written, you are asked if you want to load the project immediately. If you do,
your current project is unloaded.

For more information on creating DLLs, see the Preparing Source Code for Use in a DLL
section in Chapter 1, Updates to the Programmer Reference Manual in this document.

General Updates to LabWindows/CVI Manuals Chapter 5

LabWindows/CVI 4.0 Addendum 5-6 © National Instruments Corporation

Function Panel Editor
The following changes have been made to the Function Panel Editor.

VXI Plug & Play Style

The VXI Plug & Play Style command has been added to the Options menu in the Function
Tree Editor window for Windows 95 and NT. It works in conjunction with the Create DLL
Project command. When a checkmark appears next to the VXI Plug & Play Style command in
the menu, the Create DLL Project command creates a project that conforms to the rules for
VXI plug&play instrument driver DLLs. For example, “_32” is appended to the filename of the
DLL.

Numeric Control Supports Additional Data Types

You can now use the following data types in a numeric control.

int
short
char
unsigned int
unsigned short
unsigned char
double
float

Chapter 5 General Updates to LabWindows/CVI Manuals

© National Instruments Corporation 5-7 LabWindows/CVI 4.0 Addendum

Changes to the Programmer’s Toolbox
The Programmer’s Toolbox is a set of generally useful instrument drivers in the
cvi\toolslib\toolbox directory. The documentation for the functions is contained in the
function panels for each instrument driver. This chapter describes the additions and
enhancements to the Programmer’s Toolbox at a general level. For detailed information, refer to
the function panels.

Additions to the inifile Instrument Driver
You can use the functions of the inifile instrument driver to read and write Windows .ini
style text files. The following additions have been made.

New Functions to Handle DOS/Windows Pathnames

In the inifile instrument driver, the original functions for reading and writing string values
use backslashes as escape codes for unprintable characters. This causes a problem when you
want to read and write DOS/Windows pathnames.

New functions have been added which treat backslashes as any other characters. They are the
following.

Ini_PutRawString
Ini_GetPointerToRawString
Ini_GetRawStringCopy
Ini_GetRawStringIntoBuffer

Easy Tab Instrument Driver Added
You can use functions in the easytab instrument driver to display LabWindows/CVI User
Interface panels in an overlapped manner with tabs, very similar to a Windows 95 tabbed dialog.

The easytab instrument driver is very flexible. You can use it to perform the following
actions.

• Create multiple rows of tabs.

• Nest tabbed dialogs within tabbed dialogs.

• Put multiple tabbed dialogs on the same parent panel.

General Updates to LabWindows/CVI Manuals Chapter 5

LabWindows/CVI 4.0 Addendum 5-8 © National Instruments Corporation

• Show the tabs on the top, bottom, left, or right of the panels.

• Choose whether to stretch or separate the tabs to fit the entire length or width of the panels.

• Set a maximum gap between the tabs.

• Assign underline key accelerators to the tab labels.

The easytab instrument driver uses a LabWindows/CVI canvas control to contain the panels
and the tabs. When you create a tabbed dialog, you get a control ID that can be used just like any
other User Interface Library control ID. The easytab instrument driver automatically sizes the
panels so that they fit within the canvas control.

You can add panels to the tabbed dialog in either of two ways.

• You can specify a list of handles for panels previously loaded or created with the
LoadPanel or NewPanel function.

• You can specify a list of resource IDs for panels in a .uir file.

New Instrument Driver for Regular
Expression Matching
You can use the functions in the regexpr instrument driver to search text strings for patterns
that match regular expressions.

The driver's high-level function takes a text string and a regular expression and finds a substring
which matches the regular expression.

The driver's low-level functions parse a regular expression, match it to the beginning of a text
buffer, and then eliminate the parse tree.

© National Instruments Corporation A-1 LabWindows/CVI 4.0 Addendum

Appendix A
Customer Communication
For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve technical problems you might have as well as a form you can use to comment on
the product documentation. Filling out a copy of the Technical Support Form before contacting
National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around the world. In the U.S.
and Canada, applications engineers are available Monday through Friday from 8:00 a.m. to
6:00 p.m. (central time). In other countries, contact the nearest branch office. You may fax
questions to us at any time.

Electronic Services

Bulletin Board Support

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of
files and documents to answer most common customer questions. From these sites, you can also
download the latest instrument drivers, updates, and example programs. For recorded
instructions on how to use the bulletin board and FTP services and for BBS automated
information, call (512) 795-6990. You can access these services at:

• United States: (512) 794-5422 or (800) 327-3077
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

• United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

• France: 1 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FaxBack Support

FaxBack is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access FaxBack from a touch-tone telephone at the
following numbers:
(512) 418-1111

Customer Communication Appendix A

LabWindows/CVI 4.0 Addendum A-2 © National Instruments Corporation

FTP Support

To access our FTP site, log on to our Internet host, ftp.natinst.com , as anonymous and
use your Internet address, such as joesmith@anywhere.com , as your password. The
support files and documents are located in the /support directories.

E-Mail Support (currently U.S. only)

You can submit technical support questions to the appropriate applications engineering team
through e-mail at the Internet addresses listed below. Remember to include your name, address,
and phone number so we can contact you with solutions and suggestions.

GPIB: gpib.support@natinst.com
DAQ: daq.support@natinst.com
VXI: vxi.support@natinst.com
LabVIEW: lv.support@natinst.com
LabWindows: lw.support@natinst.com
HiQ: hiq.support@natinst.com
VISA: visa.support@natinst.com

Fax and Telephone Support
National Instruments has branch offices all over the world. Use the list below to find the
technical support number for your country. If there is no National Instruments office in your
country, contact the source from which you purchased your software to obtain support.

Telephone Fax

Australia 03 9 879 9422 03 9 879 9179
Austria 0662 45 79 90 0 0662 45 79 90 19
Belgium 02 757 00 20 02 757 03 11
Canada (Ontario) 519 622 9310 519 622 9311
Canada (Quebec) 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 71 11
Finland 90 527 2321 90 502 2930
France 1 48 14 24 24 1 48 14 24 14
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 95 800 010 0793 5 520 3282
Netherlands 0348 433466 0348 430673
Norway 32 84 84 00 32 84 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644
U.K. 01635 523545 01635 523154

Technical Support Form
Photocopy this form and update it each time you make changes to your software or hardware, and use the
completed copy of this form as a reference for your current configuration. Completing this form accurately before
contacting National Instruments for technical support helps our applications engineers answer your questions more
efficiently.

If you are using any National Instruments hardware or software products related to this problem, include the
configuration forms from their user manuals. Include additional pages if necessary.

Name ___

Company __

Address__

__

Fax () Phone ()

Computer brand Model Processor

Operating system: Windows 3.1, Windows for Workgroups 3.11, Windows NT 3.1, Windows NT 3.5,
Windows 95, other (include version number)

Version of Excel (look at Excel’s About box): 5.0, 5.0c, other

Clock Speed MHz RAM MB Display adapter

Mouse yes no Other adapters installed

Hard disk capacity MB Brand

Instruments used

National Instruments hardware product model Revision

Configuration

National Instruments software product Version

Configuration

The problem is

List any error messages

The following steps will reproduce the problem

3

Hardware and Software Configuration Form
Record the settings and revisions of your hardware and software on the line to the right of each item. Complete a
new copy of this form each time you revise your software or hardware configuration, and use this form as a
reference for your current configuration. When you complete this form accurately before contacting National
Instruments for technical support, our applications engineers can answer your questions more efficiently.

National Instruments Products

Data Acquisition Hardware Revision __

Interrupt Level of Hardware ___

DMA Channels of Hardware __

Base I/O Address of Hardware ___

NI-DAQ, LabVIEW, or
LabWindows Version __

Other Products

Computer Make and Model ___

Microprocessor ___

Clock Frequency __

Type of Video Board Installed ___

Operating System ___

Operating System Version __

Operating System Mode __

Programming Language __

Programming Language Version ___

Other Boards in System __

Base I/O Address of Other Boards __

DMA Channels of Other Boards ___

Interrupt Level of Other Boards __

5

Documentation Comment Form
National Instruments encourages you to comment on the documentation supplied with our products. This
information helps us provide quality products to meet your needs.

Title: LabWindows®/CVI 4.0 Addendum

Edition Date: March 1996

Part Number: 321194A-01

Please comment on the completeness, clarity, and organization of the manual.

__

__

__

__

__

__

__

__

If you find errors in the manual, please record the page numbers and describe the errors.

__

__

__

__

__

__

__

__

Thank you for your help.

Name ___

Title __

Company __

Address__

__

Fax () Phone ()

Mail to: Technical Publications Fax to: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge Point Parkway, MS 53-02 MS 53-02
Austin, TX 78730-5039 (512) 794-5678

	LabWindows/CVI 4.0 Addendum
	Warranty
	Copyright
	Trademarks
	Warning Regarding Medical and Clinical Use of National Instruments Products

	Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Updates to the Programmer Reference Manual
	Chapter Contents
	Compiler/Linker Enhancements for Windows 95 and NT
	Loading DLLs in LabWindows/CVI
	Loading 16-bit DLLs under Windows 3.1
	Loading 32-bit DLLs under Windows 95 and NT
	DLLs for Instrument Drivers and User Libraries
	Using The LoadExternalModule Function
	Link Errors when Using DLL Import Libraries
	DLL Path (.pth) Files No Longer Supported
	16-Bit DLLs No Longer Supported
	Generating an Import Library
	Default Unloading/Reloading Policy
	Compatibility with External Compilers
	Choosing Your Compatible Compiler
	Object Files, Library Files, and DLL Import Libraries
	DLLs
	Structure Packing
	Bit Fields
	Returning Floats and Doubles
	Returning Structures
	Enum Sizes
	Long Doubles
	Differences with the External Compilers
	External Compiler Versions Supported
	Required Preprocessor Definitions
	Creating Executables and DLLs in External Compilers for Use with the LabWindows/CVI Libraries
	Include Files for the ANSI C Library and the LabWindows/CVI Libraries
	Standard Input/Output Window
	Multithreading and the LabWindows/CVI Libraries
	Multithreaded Safe Libraries
	Libraries that are Not Multithreaded Safe
	Resolving Callback References From .UIR Files
	Linking to Callback Functions Not Exported From a DLL
	Resolving References from Modules Loaded at Run-Time
	Resolving References to Non-CVI Symbols
	Resolving Run-Time Module References to Symbols Not Exported From a DLL
	Run State Change Callbacks Are Not Available in External Compilers
	Calling InitCVIRTE and CloseCVIRTE
	Creating Object and Library Files in External Compilers for Use in LabWindows/CVI
	Microsoft Visual C/C++
	Borland C/C++ command line compiler
	WATCOM C/C++
	Symantec C/C++
	Creating Executables in LabWindows/CVI
	Creating DLLs in LabWindows/CVI
	Customizing an Import Library
	Preparing Source Code for Use in a DLL
	Calling Convention for Exported Functions
	Exporting DLL Functions and Variables
	Include File Method
	Export Qualifier Method
	Marking Imported Symbols in Include File Distributed with DLL
	Recommendations
	Automatic Inclusion of Type Library Resource for Visual Basic
	Creating Static Libraries in LabWindows/CVI
	Creating Object Files in LabWindows/CVI
	Calling Windows SDK Functions in LabWindows/CVI
	Windows SDK Include Files
	Using Windows SDK Functions for User Interface Capabilities
	Using Windows SDK Functions to Create Multiple Threads
	Automatic Loading of SDK Import Libraries
	Setting Up Include Paths for LabWindows/CVI, ANSI C, and SDK Libraries
	Compiling in LabWindows/CVI for Linking in LabWindows/CVI
	Compiling in LabWindows/CVI for Linking in an External Compiler
	Compiling in an External Compiler for Linking in an External Compiler
	Compiling in an External Compiler for Linking in LabWindows/CVI
	Run-Time Stack Size
	No Floating Point Coprocessor Required
	New Predefined Macros
	General Compiler/Linker Enhancements
	Maximum Nesting of Include Files
	C Language Extensions
	Calling Conventions (Windows 95/NT Only)
	Import and Export Qualifiers
	C++-Style Comment Markers
	Duplicate Typedefs
	Structure Packing Pragma (Windows 3.1 and Windows 95/NT only)
	Program Entry Points (Windows 95 and NT only)
	Include Paths
	Non-Project-Specific User-Defined Include Paths
	VXI Plug & Play Include Directory
	Complete Search Precedence
	Searching for Instrument Driver DLLs (Windows 3.1 Only)
	Correction to Documentation
	Searching for DLLs Associated with .fp Files
	Run State Change Callbacks - Clarification
	Distributing Executables, DLLs, and Libraries in Windows 95
	The Run-Time Library DLLs
	Distributing DLLs You Create
	Minimum System Requirements
	No Math Coprocessor Required
	Configuring the Run-Time Library DLLs
	Location of Files on the Target Machine
	Rules for Using Statically Linked DLL Files
	Rules for Loading Files Using LoadExternalModule
	Distributing Libraries in Windows 95 and NT
	Handling Hardware Interrupts under Windows 95 and NT
	New Compiler/Linker/Run-Time Errors and Warnings

	Chapter 2 Updates to the User Manual
	Chapter Contents
	Project Window Changes
	File Menu
	Auto Save Project
	Print
	Most Recently Closed Files
	Edit Menu
	Use Import Libraries in Project Instead of .dll and .pth Files (Windows 95/NT Only)
	Build Menu
	Target (Windows 95/NT Only)
	External Compiler Support (Windows 95/NT only)
	Create Standalone Executable
	Create Dynamic Link Library (Windows 95/NT Only)
	Create Static Library (Windows 95/NT Only)
	Create Distribution Kit (Windows 3.1 and Windows 95/NT Only)
	Advanced Distribution Kit Options
	Installation Script File Section
	Executable to Run After Setup
	Installation Titles
	Using Instrument Drivers
	Instrument Driver Files
	VXIplug&play Include Files
	VXIplug&play DLLs (Windows 3.1)
	DLL Import Libraries for VXI Plug & Play DLLs (Windows 95 and NT)
	Window Menu
	Minimize All (Windows 95 only)
	CloseAll
	Library Menu
	Easy I/O for DAQ (Windows 3.1, Windows 95 and NT)
	Options Menu
	Compiler Options
	Compiler Defines
	Include Paths
	Run Options
	Source Window Changes
	Notification of External Modification (Windows 3.1 and Windows 95/NT Only)
	Backspace to Beginning of Word
	Context Menus
	Edit Menu
	Select All
	View Menu
	Recall Panel
	Find Function Panel
	Run Menu
	Terminate Execution Shortcut Key Changed for Windows 95/NT
	Activate Panels When Resuming
	Options Menu
	Colors
	Syntax Coloring
	User Defined Tokens for Coloring
	Generate DLL Import Source (Windows 95/NT Only)
	Generate DLL Import Library (Windows 95/NT Only)
	Create Object File
	Function Panel Changes
	Code Menu
	Select Variable
	What Can be Included in the List Box
	Data Type Compatibility
	Sorting of List Box Entries

	Chapter 3 Updates to the User Interface Reference Manual
	Chapter Contents
	Changes to the User Interface Library
	Summary of Major Enhancements
	Corrections to Documentation
	VAL_PORTRAIT and VAL_LANDSCAPE Values
	RegisterWinMsgCallback
	Using Zooming and Panning on Graph Controls
	Zooming and Panning on Graphs
	Using Canvas Controls
	Canvas Controls
	CodeBuilder Changes
	WinMain
	DLL Projects
	InitCVIRTE and CloseCVIRTE Functions
	New Qualifier for Callback Functions
	Additions to Table 3-2, Panel Attributes
	Additions to Table 3-5, Font Values
	Additions to Table 3-6, Menu and Menu Item Attributes
	Additions to Table 3-7, Key Modifiers and Virtual Keys
	Additions to Table 3-9, Control Attributes
	Addition to Table 3-10, Control Styles for ATTR_CTRL_STYLE
	Programming with Canvas Controls
	Functions for Drawing on Canvas
	Batch Drawing
	Canvas Coordinate System
	Offscreen Bitmap
	Clipping
	Background Color
	Pens
	Pixel Values
	Canvas Attributes
	Canvas Attribute Discussion
	Using Rect and Point Structures
	Functions and Macros for Making Rects and Points
	Functions for Modifying Rects and Points
	Functions for Comparing or Obtaining Values from Rects and Points
	Using Bitmap Objects
	Functions for Creating, Extracting, or Discarding Bitmap Objects
	Windows Metafiles
	Functions for Displaying or Copying Bitmap Objects
	Functions for Retrieving Image Data from Bitmap Objects
	Additions to Table 3-16, Graph and Strip Chart Attributes
	Plot Origin Discussion
	Two Y Axis (graphs only)
	Changes to the Picture Control Image Bits functions
	Image Bits Functions Superseded by New Functions
	24-Bit Pixel Depth Supported in Image Bits Functions
	Using the System Attributes
	Additions to Table A-1, User Interface Library Error Codes
	New User Interface Library Functions
	AllocBitmapData
	CanvasClear
	CanvasDefaultPen
	CanvasDimRect
	CanvasDrawArc
	CanvasDrawBitmap
	CanvasDrawLine
	CanvasDrawLineTo
	CanvasDrawOval
	CanvasDrawPoint
	CanvasDrawPoly
	CanvasDrawRect
	CanvasDrawRoundedRect
	CanvasDrawText
	CanvasDrawTextAtPoint
	CanvasEndBatchDraw
	CanvasGetClipRect
	CanvasGetPenPosition
	CanvasGetPixel
	CanvasGetPixels
	CanvasInvertRect
	CanvasScroll
	CanvasSetClipRect
	CanvasSetPenPosition
	CanvasStartBatchDraw
	CanvasUpdate
	ClearAxisItems
	ClipboardGetBitmap
	ClipboardGetText
	ClipboardPutBitmap
	ClipboardPutText
	DeleteAxisItem
	DiscardBitmap
	Get3dBorderColors
	GetAxisItem
	GetAxisItemLabelLength
	GetAxisScalingMode
	GetBitmapData
	GetBitmapFromFile
	GetBitmapInfo
	GetCtrlBitmap
	GetCtrlDisplayBitmap
	GetNumAxisItems
	GetPanelDisplayBitmap
	GetSystemAttribute
	InsertAxisItem
	LoadMenuBarEx
	LoadPanelEx
	MakePoint
	MakeRect
	NewBitmap
	PlotScaledIntensity
	PointEqual
	PointPinnedToRect
	PointSet
	RectBottom
	RectCenter
	RectContainsPoint
	RectContainsRect
	RectEmpty
	RectEqual
	RectGrow
	RectIntersection
	RectMove
	RectOffset
	RectRight
	RectSameSize
	RectSet
	RectSetBottom
	RectSetCenter
	RectSetFromPoints
	RectSetRight
	RectUnion
	ReplaceAxisItem
	SetAxisScalingMode
	SetCtrlBitmap
	SetSystemAttribute

	Chapter 4 Updates to the Standard Libraries Reference Manual
	Chapter Contents
	Changes to the ANSI C Library and Low-Level I/O Functions
	errno Set by File I/O Functions
	New Low-Level I/O Function
	New ANSI C Library Function
	fdopen
	Changes to the Formatting and I/O Library
	Improved File I/O Error Reporting
	GetFmtIOError
	GetFmtIOErrorString
	Changes to the GPIB Library
	Different Levels of Functionality Depending on Platform and GPIB Board
	Windows 3.1
	Windows 95
	Native 32-Bit Driver
	Compatibility Driver
	Windows NT
	Limitations on Transfer Size
	Multithreading
	Notification of SRQ and Other GPIB Events
	Synchronous Callbacks
	Asynchronous Callbacks
	Driver Version Requirements
	New Functions
	ibInstallCallback
	SRQI, RQS, and Auto Serial Polling
	CallbackFunction
	ibNotify
	SRQI, RQS, and Auto Serial Polling
	CallbackFunction
	Restrictions on Operations in Asynchronous Callbacks
	ThreadIbcnt
	ThreadIbcntl
	ThreadIberr
	ThreadIbsta
	Changes to the RS-232 Library
	New Function
	InstallComCallback
	Changes to the Utility Library
	Corrections to Documentation
	LaunchExecutableEx
	Modifications to Existing Functions for Windows 95 and NT
	DisableTaskSwitching
	LoadExternalModule
	SetSystemDate and SetSystemTime
	EnableInterrupts and DisableInterrupts
	Revised Error Codes
	New Functions
	CVILowLevelSupportDriverLoaded
	GetBreakOnProtectionErrors
	GetCVIVersion
	GetCurrentPlatform
	GetModuleDir
	LoadExternalModuleEx
	ReadFromPhysicalMemoryEx
	ReleaseExternalModule
	SetBreakOnLibraryErrors
	SetBreakOnProtectionErrors
	WriteToPhysicalMemoryEx
	Easy I/O for DAQ Library
	Easy I/O for DAQ Library Function Overview
	Advantages of Using the Easy I/O for DAQ Library
	Limitations of Using the Easy I/O for DAQ Library
	Easy I/O for DAQ Library Function Panels
	Device Numbers
	Channel String for Analog Input Functions
	Command Strings
	Channel String for Analog Output Functions
	Valid Counters for the Counter/Timer Functions
	The Easy I/O for DAQ Function Reference
	AIAcquireTriggeredWaveforms
	AIAcquireWaveforms
	AICheckAcquisition
	AIClearAcquisition
	AIReadAcquisition
	AISampleChannel
	AISampleChannels
	AIStartAcquisition
	AOClearWaveforms
	AOGenerateWaveforms
	AOUpdateChannel
	AOUpdateChannels
	ContinuousPulseGenConfig
	CounterEventOrTimeConfig
	CounterMeasureFrequency
	CounterRead
	CounterStart
	CounterStop
	DelayedPulseGenConfig
	FrequencyDividerConfig
	GetAILimitsOfChannel
	GetChannelIndices
	GetChannelNameFromIndex
	GetDAQErrorString
	GetNumChannels
	GroupByChannel
	ICounterControl
	PlotLastAIWaveformsPopup
	PulseWidthOrPeriodMeasConfig
	ReadFromDigitalLine
	ReadFromDigitalPort
	WriteToDigitalLine
	WriteToDigitalPort
	Error Conditions

	Chapter 5 General Updates to LabWindows/CVI
	Chapter Contents
	Configuring LabWindows/CVI in Windows 95 and NT
	How To Set Configuration Options
	Option Descriptions
	Directory Options
	cfgdir
	Changes to the Data Acquisition Library
	Event Function Parameter Data Types Changed for Windows 95 and NT
	Source Code Changes Needed
	Differences in Current NI-DAQ ® API for Windows NT
	Changes to the Function Tree and Function Panel Editors
	Function Tree Editor
	Maximum Number of Levels Increased to Eight
	Create DLL Project (Windows 95/NT Only)
	Function Panel Editor
	VXI Plug & Play Style
	Numeric Control Supports Additional Data Types
	Changes to the Programmer’s Toolbox
	Additions to the inifile Instrument Driver
	New Functions to Handle DOS/Windows Pathnames
	Easy Tab Instrument Driver Added
	New Instrument Driver for Regular Expression Matching

	Appendix A Customer Communication
	Figures
	Figure 2-1. External Compiler Support Dialog Box
	Figure 2-2. The Create Dynamic Link Library Dialog Box
	Figure 2-3. The Create Static Library Dialog Box
	Figure 2-4. Advanced Distribution Kit Options dialog box
	Figure 2-5. The Select Variable or Expression Dialog Box

	Tables
	Table 1-1. Error Messages for Appendix A, Programmer Reference Manual
	Table 2-1. Platforms Where Utility Functions Need Low-Level Support Driver
	Table 3-1. Canvas Control Attributes
	Table 3-2. Values for ATTR_DRAW_POLICY
	Table 3-3. Values for ATTR_OVERLAPPED_POLICY
	Table 3-4. Values for ATTR_PEN_MODE
	Table 3-5. Values and Macros for Rect Structures
	Table 3-6. Values for ATTR_PLOT_ORIGIN
	Table 3-7. System Attributes
	Table 4-1. Easy I/O for DAQ Function Tree
	Table 4-2. Valid Counters
	Table 4-3. Definition of Am 9513: Counter +1
	Table 4-4. Adjacent Counters
	Table 4-5. Easy I/O for DAQ Error Codes
	Table 5-1. Typedefs and Intrinsic Types for Different Platforms

